New lytic and new temperate Staphylococcus hyicus phages
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO60077344
Akademie Věd České Republiky
LM2023050 Czech-BioImaging and OP VVV CZ.02.1.01/0.0/0.0/18_046/0016045
MEYS CR
PubMed
40087227
DOI
10.1007/s11262-025-02151-5
PII: 10.1007/s11262-025-02151-5
Knihovny.cz E-zdroje
- Klíčová slova
- Alternative to antibiotics, Exudative epidermitis, Lytic phage, Temperate phage,
- MeSH
- feces virologie MeSH
- fylogeneze MeSH
- genom virový MeSH
- hostitelská specificita MeSH
- otevřené čtecí rámce MeSH
- prasata MeSH
- stafylokokové bakteriofágy * genetika izolace a purifikace klasifikace ultrastruktura fyziologie MeSH
- Staphylococcus * virologie genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
A novel lytic phage with a broad host range was isolated from pig faeces and the complete genome was subsequently sequenced. The phage was found to lyse Staphylococcus hyicus, S. pseudintermedius, S. schleiferi and S. warneri, generating approximately 27 PFU per infected S. hyicus cell. The phage has an isometric head of 42 ± 2 nm in diameter and a noncontractile tail of 114 ± 9 nm long. The genome is 53,660 bp in size and consists of 79 predicted ORFs and one tRNAArg gene. The phage has been classified within the Caudoviricetes, specifically the Chaseviridae family. Its broad host range and absence of harmful genes make it suitable for use in phage therapy. In addition, a novel temperate phage was discovered that was spontaneously released from a S. hyicus isolate Pel11 from a pig with exudative epidermitis. This novel temperate phage differs from the known temperate phages in S. hyicus strains NCTC10350, MM2101 or 83/7-1B, representing a novel pathogenicity element in the S. hyicus genome.
Zobrazit více v PubMed
Foisac M, Lekaditi M, Loutfi B, Ahrhart A, Dauchy F-A (2016) Spondylodiscitis and bacteremia due to Staphylococcus hyicus in an immunocompetent man. GERMS. https://doi.org/10.11599/germs.2016.1097 DOI
Nagase N, Sasaki A, Yamashita K, Shimizu A, Wakita Y, Kitai S et al (2002) Isolation and species distribution of staphylococci from animal and human skin. J Vet Med Sci 64:245–250. https://doi.org/10.1292/jvms.64.245 PubMed DOI
Foster AP (2012) Staphylococcal skin diseases in livestock. Vet Dermatol 23(342–351):E63. https://doi.org/10.1111/j.1365-3164.2012.01093.x PubMed DOI
Wegener HC (1993) Development of a phage typing system for Staphylococcus hyicus. Res Microbiol 144:237–244. https://doi.org/10.1016/0923-2508(93)90049-8 PubMed DOI
Park J, Friendship RM, Weese JS, Poljak Z, Dewey CE (2013) An investigation of resistance to b-lactam antimicrobials among staphylococci isolated from pigs with exudative epidermitis. BMC Vet Res 9:211. https://doi.org/10.1186/1746-6148-9-211 PubMed DOI PMC
Moreno AM, Moreno LZ, Poor AP, Matajira CEC, Moreno M, Gomes VTDM, da Silva GFR, Takeuti KL, Barcellos DE (2022) Antimicrobial resistance profile of Staphylococcus hyicus strains isolated from Brazilian swine herds. Antibiotics 11:205. https://doi.org/10.3390/antibiotics11020205 PubMed DOI PMC
Leekitcharoenphon P, Pamp SJ, Andresen LO, Aarestrup FM (2016) Comparative genomics of toxigenic and non-toxigenic Staphylococcus hyicus. Vet Microbiol 185:34–40. https://doi.org/10.1016/j.vetmic.2016.01.018 PubMed DOI
Kibenge FSB, Rood JI, Wilcox GE (1983) Lysogeny and other characteristics of Staphylococcus hyicus isolated from chickens. Vet Microbiol 8:411–415. https://doi.org/10.1016/0378-1135(83)90054-8 PubMed DOI
Shimizu A, Teranishi H, Kawano J, Kimura S (1987) Phage patterns of Staphylococcus hyicus subsp. hyicus isolated from chickens, cattle and pigs. Zbl Bakt Hyg A 265:57–61. https://doi.org/10.1016/S0176-6724(87)80152-9 DOI
Tetens J, Sprotte S, Thimm G, Wagner N, Brinkd E, Neve H, Hölzel CS, Franz MAP (2021) First molecular characterization of Siphoviridae-like bacteriophages infecting Staphylococcus hyicus in a case of exudative epidermitis. Front Microbiol 12:653501. https://doi.org/10.3389/fmicb.2021.653501 PubMed DOI PMC
Petrzik K, Brázdová S (2023) Jojan: a novel virus that lyses Stenotrophomonas maltophilia from dog. Virus Genes 59:775–780. https://doi.org/10.1007/s11262-023-02021-y PubMed DOI
Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD et al (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. https://doi.org/10.1038/srep08365 PubMed DOI PMC
Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J, Lozajic M, Gabler F, Söding J, Lupas AN, Alva V (2018) A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol S0022–2836(17):30587–30589
Calcutt MJ, Foecking MF, Hsieh HY, Adkins PRF, Stewart GC, Middleton JR (2015) Sequence analysis of Staphylococcus hyicus ATCC 11249T, an etiolocial agent of exudative epidermitis in swine, reveals a type VII secretion system locus and a novel 116-kilobase genomic island harboring toxin-encoding genes. Genome Announc 3:e01525-e1614. https://doi.org/10.1128/genomeA.01525-14 PubMed DOI PMC
Tatusova T et al (2014) RefSeq microbial genomes database: a new representation and annotation stratégy. Nucl Acids Res. https://doi.org/10.1093/nar/gkt1274 PubMed DOI PMC
Fornelos N, Browning DF, Butala M (2016) The use and abuse of LexA by mobile genetic elements. Trends Microbiol 24:391–401. https://doi.org/10.1016/j.tim.2016.02.009 PubMed DOI
Wood HE, Devine KM, McConnell DJ (1990) Characterization of a repressor gene (xre) and a temperature-sensitive allele from the Bacillus subtilis prophage, PBSX. Gene 96:83–88 PubMed DOI
Iyer LM, Koonin EV, Aravind L (2002) Extensive domain shuffling in transcription regulators of DNA viruses and implications for the origin of fungal APSES transcription factors. Genome Biol. https://doi.org/10.1186/gb-2002-3-3-research0012 PubMed DOI PMC
Aslam B, Arshad MI, Aslam MA, Muzammil S, Siddique AB, Yasmeen N, Khurshid M et al (2021) Bacteriophage proteome: insight and potential of an alternate to antibiotics. Infect Dis Ther 10:1171–1193. https://doi.org/10.1007/s40121-021-00446-2 PubMed DOI PMC
Weinhold SM, Lienau J, Witzenrath M (2019) Towards inhaled phage therapy in Western Europe. Viruses 11:295. https://doi.org/10.3390/v11030295 DOI
Chan BK, Abedon ST, Loc-Carrillo C (2013) Phage cocktails and the future of phage therapy. Future Microbiol 8:769–783. https://doi.org/10.2217/fmb.13.47 PubMed DOI
Melo LDR, Oliveira H, Pires DP, Dabrowska K, Azeredo J (2020) Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit Rev Microbiol 46:78–99. https://doi.org/10.1080/1040841X.2020.1729695 PubMed DOI
Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST (2021) Treating bacterial infections with bacteriophage-based enzybiotics: In vitro, in vivo and clinical application. Antibiotics 10:1497. https://doi.org/10.3390/antibiotics10121497 PubMed DOI PMC
Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H, Goto S (2017) ViPTree: the viral proteomic tree server. Bioinformatics 33:2379–2380. https://doi.org/10.1093/bioinformatics/btx157 PubMed DOI