Positive allosteric modulation of AMPA receptors via PF4778574 leads to reduced demyelination and clinical disability in experimental models of multiple sclerosis

. 2025 ; 16 () : 1532877. [epub] 20250305

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40109348

INTRODUCTION: Multiple Sclerosis (MS), a debilitating central nervous system (CNS) disorder, is characterized by inflammation, demyelination, and neuronal degeneration. Despite advancements in immunomodulatory treatments, neuroprotective or restorative strategies remain inadequate. Our research is focusing on the potential of the positive allosteric modulator of AMPA receptors (AMPA-PAM), PF4778574, in addressing MS symptoms. METHODS: We utilized the MOG35-55 induced experimental autoimmune encephalomyelitis (EAE) model in C57BL6J mice to examine PF4778574's therapeutic and prophylactic efficacy. Our comprehensive approach included clinical scoring, optical coherence tomography (OCT), optomotor response (OMR) and histological assessments. Additionally, we explored the effects of PF4778574 in comparison and in combination with the immunomodulatory agent fingolimod, and investigated the impact on Cuprizone induced toxic demyelination. RESULTS: Prophylactic administration of PF4778574 showed notable improvement in clinical EAE indices and reduction in neuronal loss. While it did not diminish microglial activity, it reduced demyelinated areas in optic nerves and in the corpus callosum. Both PF4778574 and fingolimod significantly enhanced clinical EAE scores and decreased demyelination. However, their combination did not yield additional benefits. In the cuprizone model, PF4778574 increased oligodendrocyte precursor and mature myelin-forming cells, suggesting a pro-remyelinating effect. DISCUSSION: PF4778574 demonstrates promise in mitigating EAE effects, especially in terms of clinical disability and demyelination. These results suggest AMPA-PAMs as potential targets of interest for MS treatment beyond immunomodulatory approaches.

Zobrazit více v PubMed

Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis. New Engl J Med. (2018) 378:169–80. doi: 10.1056/NEJMra1401483 PubMed DOI PMC

Dietrich M, Koska V, Hecker C, Göttle P, Hilla AM, Heskamp A, et al. . Protective effects of 4-aminopyridine in experimental optic neuritis and multiple sclerosis. Brain: A J Neurol. (2020) 143:1127–42. doi: 10.1093/brain/awaa062 PubMed DOI

Zörner B, Filli L, Reuter K, Kapitza S, Lörincz L, Sutter T, et al. . Prolonged-release fampridine in multiple sclerosis: Improved ambulation effected by changes in walking pattern. Multiple Sclerosis (Houndmills Basingstoke England). (2016) 22:1463–75. doi: 10.1177/1352458515622695 PubMed DOI

Partin KM. AMPA receptor potentiators: From drug design to cognitive enhancement. Curr Opin Pharmacol. (2015) 20:46–53. doi: 10.1016/j.coph.2014.11.002 PubMed DOI PMC

Reuillon T, Ward SE, Beswick P. AMPA receptor positive allosteric modulators: potential for the treatment of neuropsychiatric and neurological disorders. Curr Topics Medicinal Chem. (2016) 16:3536–65. doi: 10.2174/1568026616666160627114507 PubMed DOI

Ward SE, Harries MH, Aldegheri L, Bradford AM, Ballini E, Dawson L, et al. . Pharmacological characterisation of MDI-222, a novel AMPA receptor positive allosteric modulator with an improved safety profile. J Psychopharmacol (Oxford England). (2020) 34:93–102. doi: 10.1177/0269881119872198 PubMed DOI PMC

Frydenvang K, Pickering DS, Kastrup JS. Structural basis for positive allosteric modulation of AMPA and kainate receptors. J Physiol. (2022) 600:181–200. doi: 10.1113/JP280873 PubMed DOI

Black MD. Therapeutic potential of positive AMPA modulators and their relationship to AMPA receptor subunits. A review of preclinical data. Psychopharmacology. (2005) 179:154–63. doi: 10.1007/s00213-004-2065-6 PubMed DOI

Lee K, Goodman L, Fourie C, Schenk S, Leitch B, Montgomery JM. AMPA receptors as therapeutic targets for neurological disorders. Adv Protein Chem Struct Biol. (2016) 103:203–61. doi: 10.1016/bs.apcsb.2015.10.004 PubMed DOI

Arai AC, Kessler M. Pharmacology of ampakine modulators: from AMPA receptors to synapses and behavior. Curr Drug Targets. (2007) 8(5):583–602. doi: 10.2174/138945007780618490 PubMed DOI

Trapp BD, Nave K-A. Multiple sclerosis: An immune or neurodegenerative disorder? Annu Rev Neurosci. (2008) 31:247–69. doi: 10.1146/annurev.neuro.30.051606.094313 PubMed DOI

Kostic M, Zivkovic N, Stojanovic I. Multiple sclerosis and glutamate excitotoxicity. Rev Neurosci. (2013) 24:71–88. doi: 10.1515/revneuro-2012-0062 PubMed DOI

Bonnet CS, Williams AS, Gilbert SJ, Harvey AK, Evans BA, Mason DJ. AMPA/kainate glutamate receptors contribute to inflammation, degeneration and pain related behaviour in inflammatory stages of arthritis. Ann Rheumatic Dis. (2015) 74:242–51. doi: 10.1136/annrheumdis-2013-203670 PubMed DOI PMC

Greene IP, Lee E-Y, Prow N, Ngwang B, Griffin DE. Protection from fatal viral encephalomyelitis: AMPA receptor antagonists have a direct effect on the inflammatory response to infection. Proc Natl Acad Sci United States America. (2008) 105:3575–80. doi: 10.1073/pnas.0712390105 PubMed DOI PMC

Smith T, Groom A, Zhu B, Turski L. Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med. (2000) 6:62–6. doi: 10.1038/71548 PubMed DOI

Göttle P, Groh J, Reiche L, Gruchot J, Rychlik N, Werner L, et al. . Teriflunomide as a therapeutic means for myelin repair. J Neuroinflamm. (2023) 20:7. doi: 10.1186/s12974-022-02686-6 PubMed DOI PMC

Aytulun A, Cruz-Herranz A, Aktas O, Balcer LJ, Balk L, Barboni P, et al. . APOSTEL 2.0 recommendations for reporting quantitative optical coherence tomography studies. Neurology. (2021) 97:68–79. doi: 10.1212/WNL.0000000000012125 PubMed DOI PMC

Cruz-Herranz A, Balk LJ, Oberwahrenbrock T, Saidha S, Martinez-Lapiscina EH, Lagreze WA, et al. . The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology. (2016) 86:2303–9. doi: 10.1212/WNL.0000000000002774 PubMed DOI PMC

Dietrich M, Cruz-Herranz A, Yiu H, Aktas O, Brandt AU, Hartung H-P, Green A, Albrech P. Whole-body positional manipulators for ocular imaging of anaesthetised mice and rats: a do-it-yourself guide. BMJ Open Ophthalmol. (2016) 1:e000008 PubMed PMC

Dietrich M, Hecker C, Martin E, Langui D, Gliem M, Stankoff B, et al. . Increased remyelination and proregenerative microglia under siponimod therapy in mechanistic models. Neurology(R) Neuroimmunol Neuroinflamm. (2022) 9:e1161. doi: 10.1212/NXI.0000000000001161 PubMed DOI PMC

Hecker C, Dietrich M, Issberner A, Hartung H-P, Albrecht P. Comparison of different optomotor response readouts for visual testing in experimental autoimmune encephalomyelitis-optic neuritis. J Neuroinflamm. (2020) 17:216. doi: 10.1186/s12974-020-01889-z PubMed DOI PMC

Dietrich M, Hecker C, Hilla A, Cruz-Herranz A, Hartung H-P, Fischer D, et al. . Using optical coherence tomography and optokinetic response as structural and functional visual system readouts in mice and rats. J Visualized Experiments (JoVE). (2019) 143:e58571. doi: 10.3791/58571 PubMed DOI

Destot-Wong K-D, Liang K, Gupta SK, Favrais G, Schwendimann L, Pansiot J, et al. . The AMPA receptor positive allosteric modulator, S18986, is neuroprotective against neonatal excitotoxic and inflammatory brain damage through BDNF synthesis. Neuropharmacology. (2009) 57:277–86. doi: 10.1016/j.neuropharm.2009.05.010 PubMed DOI

Jin Y, Zollinger M, Borell H, Zimmerlin A, Patten CJ. CYP4F enzymes are responsible for the elimination of fingolimod (FTY720), a novel treatment of relapsing multiple sclerosis. Drug Metab Disposition: Biol Fate Chemicals. (2011) 39:191–8. doi: 10.1124/dmd.110.035378 PubMed DOI

Calabrese EJ. Hormesis: Why it is important to toxicology and toxicologists. Environ Toxicol Chem. (2008) 27:1451–74. doi: 10.1897/07-541 PubMed DOI

Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, Cai L, et al. . Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Toxicol Appl Pharmacol. (2007) 222:122–8. doi: 10.1016/j.taap.2007.02.015 PubMed DOI

Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Archiv: Eur J Physiol. (2010) 460:525–42. doi: 10.1007/s00424-010-0809-1 PubMed DOI

Song I, Huganir RL. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. (2002) 25:578–88. doi: 10.1016/s0166-2236(02)02270-1 PubMed DOI

Choi EH, Blasiak A, Lee J, Yang IH. Modulation of neural activity for myelination in the central nervous system. Front Neurosci. (2019) 13:952. doi: 10.3389/fnins.2019.00952 PubMed DOI PMC

Fannon J, Tarmier W, Fulton D. Neuronal activity and AMPA-type glutamate receptor activation regulates the morphological development of oligodendrocyte precursor cells. Glia. (2015) 63:1021–35. doi: 10.1002/glia.22799 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...