Voxel-based versus network-analysis of changes in brain states in patients with auditory verbal hallucinations using the Eriksen Flanker task
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40112006
PubMed Central
PMC11925307
DOI
10.1371/journal.pone.0319925
PII: PONE-D-23-36278
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- halucinace * patofyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku MeSH
- mladý dospělý MeSH
- mozek * patofyziologie MeSH
- nervová síť * patofyziologie MeSH
- plnění a analýza úkolů MeSH
- reakční čas MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The present functional magnetic resonance imaging (fMRI) study investigated neural correlates of switching between task-processing and periods of rest in a conventional ON-OFF block-design in patients with auditory verbal hallucinations (AVHs) and healthy controls. It has been proposed that auditory hallucinations are a failure of top-down control of bottom-up perceptual processes which could be due to aberrant up- and down regulation of brain networks. A version of the Eriksen Flanker task was used to assess cognitive flexibility and conflict control. BOLD fMRI with alternating blocks of task engagement and rest was collected using a 3T MR scanner. The objective of the study was to explore how patients would dynamically modulate relevant brain networks in response to shifting environmental demands, while transitioning from a resting state to active task-processing. Analysis of performance data found significant behavioral effects between the groups, where AVH patients performed the Flanker task significantly less accurately and with longer reaction times (RTs) than the healthy control group, indicating that AVH patients displayed reduced top-down guided conflict control. A network connectivity analysis of the fMRI data showed that both groups recruited similar networks related to task-present and task-absent conditions. However, the controls displayed increased network variability across task-present and task-absent conditions. This would indicate that the controls were better at switching between networks and conditions when demands changed from task-present to task-absent, with the consequence that they would perform the Flanker task better than the AVH patients.
Department of Biological and Medical Psychology University of Bergen Bergen Norway
Department of Clinical Engineering Haukeland University Hospital Bergen Norway
Department of Clinical Medicine University of Bergen Bergen Norway
Department of Physics and Technology University of Bergen Bergen Norway
Department of Radiology Haukeland University Hospital Bergen Norway
Division of Psychiatry Haukeland University Hospital Bergen Norway
Institute of Computer Science Czech Academy of Sciences Prague Czech Republic
Neuro SysMed Department of Neurology Haukeland University Hospital Bergen Norway
Zobrazit více v PubMed
Hugdahl K. Auditory Hallucinations as Translational Psychiatry: Evidence from Magnetic Resonance Imaging. Balkan Med J. 2017;34(6):504–13. doi: 10.4274/balkanmedj.2017.1226 PubMed DOI PMC
Shinn AK, Wolff JD, Hwang M, Lebois LAM, Robinson MA, Winternitz SR, et al.. Assessing Voice Hearing in Trauma Spectrum Disorders: A Comparison of Two Measures and a Review of the Literature. Front Psychiatry. 2020;10:1011. doi: 10.3389/fpsyt.2019.01011 PubMed DOI PMC
Inzelberg R, Kipervasser S, Korczyn AD. Auditory hallucinations in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1998;64(4):533–5. doi: 10.1136/jnnp.64.4.533 PubMed DOI PMC
Shergill SS, Murray RM, McGuire PK. Auditory hallucinations: a review of psychological treatments. Schizophr Res. 1998;32(3):137–50. doi: 10.1016/s0920-9964(98)00052-8 PubMed DOI
Sartorius N, Shapiro R, Jablensky A. The international pilot study of schizophrenia. Schizophr Bull. 1974;(11):21–34. doi: 10.1093/schbul/1.11.21 PubMed DOI
Green M. Schizophrenia from a neurocognitive perspective: Probing the impenetrable darkness Needham Heights, MA, US: Allyn & Bacon; 1998. p. 190–190.
Oyebode F. Sims’ symptoms in the mind: Textbook of descriptive psychopathology. 5 ed: Elsevier Ltd; 2015.
Allen P, Aleman A, McGuire PK. Inner speech models of auditory verbal hallucinations: evidence from behavioural and neuroimaging studies. Int Rev Psychiatry. 2007;19(4):407–15. doi: 10.1080/09540260701486498 PubMed DOI
Badcock JC, Waters FAV, Maybery MT, Michie PT. Auditory hallucinations: failure to inhibit irrelevant memories. Cogn Neuropsychiatry. 2005;10(2):125–36. doi: 10.1080/13546800344000363 PubMed DOI
Waters FAV, Badcock JC, Michie PT, Maybery MT. Auditory hallucinations in schizophrenia: intrusive thoughts and forgotten memories. Cogn Neuropsychiatry. 2006;11(1):65–83. doi: 10.1080/13546800444000191 PubMed DOI
Hugdahl K. “Hearing voices”: auditory hallucinations as failure of top-down control of bottom-up perceptual processes. Scand J Psychol. 2009;50(6):553–60. doi: 10.1111/j.1467-9450.2009.00775.x PubMed DOI
Aleman A, Böcker KBE, Hijman R, de Haan EHF, Kahn RS. Cognitive basis of hallucinations in schizophrenia: role of top-down information processing. Schizophr Res. 2003;64(2–3):175–85. doi: 10.1016/s0920-9964(03)00060-4 PubMed DOI
Frith C. The neural basis of hallucinations and delusions. C R Biol. 2005;328(2):169–75. doi: 10.1016/j.crvi.2004.10.012 PubMed DOI
Hugdahl K, Løberg E-M, Specht K, Steen VM, van Wageningen H, Jørgensen HA. Auditory hallucinations in schizophrenia: the role of cognitive, brain structural and genetic disturbances in the left temporal lobe. Front Hum Neurosci. 2008;1:6. doi: 10.3389/neuro.09.006.2007 PubMed DOI PMC
Bâ MB, Curtis L, Pellizzer G. Viewer and object mental rotation in young adults with psychotic disorders. Schizophr Res. 2022;240:92–102. doi: 10.1016/j.schres.2021.12.040 PubMed DOI PMC
Brandt CL, Kaufmann T, Agartz I, Hugdahl K, Jensen J, Ueland T, et al.. Cognitive Effort and Schizophrenia Modulate Large-Scale Functional Brain Connectivity. Schizophr Bull. 2015;41(6):1360–9. doi: 10.1093/schbul/sbv013 PubMed DOI PMC
Ungar L, Nestor PG, Niznikiewicz MA, Wible CG, Kubicki M. Color Stroop and negative priming in schizophrenia: an fMRI study. Psychiatry Res. 2010;181(1):24–9. doi: 10.1016/j.pscychresns.2009.07.005 PubMed DOI PMC
Voegler R, Becker MPI, Nitsch A, Miltner WHR, Straube T. Aberrant network connectivity during error processing in patients with schizophrenia. J Psychiatry Neurosci. 2016;41(2):E3-12. doi: 10.1503/jpn.150092 PubMed DOI PMC
Westerhausen R, Kompus K, Hugdahl K. Impaired cognitive inhibition in schizophrenia: a meta-analysis of the Stroop interference effect. Schizophr Res. 2011;133(1–3):172–81. doi: 10.1016/j.schres.2011.08.025 PubMed DOI
Buckner RL. The brain’s default network: origins and implications for the study of psychosis. Dialogues Clin Neurosci. 2013;15(3):351–8. doi: 10.31887/DCNS.2013.15.3/rbuckner PubMed DOI PMC
Hugdahl K, Raichle ME, Mitra A, Specht K. On the existence of a generalized non-specific task-dependent network. Front Hum Neurosci. 2015;9:430. doi: 10.3389/fnhum.2015.00430 PubMed DOI PMC
Hugdahl K, Kazimierczak K, Beresniewicz J, Kompus K, Westerhausen R, Ersland L, et al.. Dynamic up- and down-regulation of the default (DMN) and extrinsic (EMN) mode networks during alternating task-on and task-off periods. PLoS One. 2019;14(9):e0218358. doi: 10.1371/journal.pone.0218358 PubMed DOI PMC
Riemer F, Grüner R, Beresniewicz J, Kazimierczak K, Ersland L, Hugdahl K. Dynamic switching between intrinsic and extrinsic mode networks as demands change from passive to active processing. Sci Rep. 2020;10(1):21463. doi: 10.1038/s41598-020-78579-6 PubMed DOI PMC
Allen P, Sommer IE, Jardri R, Eysenck MW, Hugdahl K. Extrinsic and default mode networks in psychiatric conditions: Relationship to excitatory-inhibitory transmitter balance and early trauma. Neurosci Biobehav Rev. 2019;99:90–100. doi: 10.1016/j.neubiorev.2019.02.004 PubMed DOI
Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC. Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry. 2009;66(8):811–22. doi: 10.1001/archgenpsychiatry.2009.91 PubMed DOI PMC
Nygård M, Eichele T, Løberg E-M, Jørgensen HA, Johnsen E, Kroken RA, et al.. Patients with Schizophrenia Fail to Up-Regulate Task-Positive and Down-Regulate Task-Negative Brain Networks: An fMRI Study Using an ICA Analysis Approach. Front Hum Neurosci. 2012;6:149. doi: 10.3389/fnhum.2012.00149 PubMed DOI PMC
Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics. 1974;16(1):143–9. doi: 10.3758/bf03203267 DOI
Westerhausen R, Kompus K, Hugdahl K. Unaffected control of distractor interference in schizophrenia: a meta-analysis of incompatibility slowing in flanker tasks. J Psychiatr Res. 2013;47(2):246–51. doi: 10.1016/j.jpsychires.2012.10.012 PubMed DOI
Panagiotaropoulou G, Thrapsanioti E, Pappa E, Grigoras C, Mylonas D, Karavasilis E, et al.. Hypo-activity of the dorsolateral prefrontal cortex relates to increased reaction time variability in patients with schizophrenia. Neuroimage Clin. 2019;23:101853. doi: 10.1016/j.nicl.2019.101853 PubMed DOI PMC
Eleni P, Georgia P, Constantine P, Efstratios K, Georgios V, Nikolaos K, et al.. Functional brain imaging of speeded decision processing in Parkinson’s disease and comparison with Schizophrenia. Psychiatry Res Neuroimaging. 2021;314:111312. doi: 10.1016/j.pscychresns.2021.111312 PubMed DOI
Smid HGOM, Bruggeman R, Martens S. Normal cognitive conflict resolution in psychosis patients with and without schizophrenia. J Abnorm Psychol. 2016;125(1):88–103. doi: 10.1037/abn0000123 PubMed DOI
Craven AR, Dwyer G, Ersland L, Kazimierczak K, Noeske R, Sandøy LB, et al.. GABA, glutamatergic dynamics and BOLD contrast assessed concurrently using functional MRS during a cognitive task. NMR Biomed. 2024;37(3):e5065. doi: 10.1002/nbm.5065 PubMed DOI
Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13(2):261–76. doi: 10.1093/schbul/13.2.261 PubMed DOI
Chandwick P, Lees S, Birchwood M. The revised Beliefs About Voices Questionnaire (BAVQ-R). Br J Psychiatry. 2000;177:229–32. doi: 10.1192/bjp.177.3.229 PubMed DOI
Hugdahl K, Hjelmervik H, Weber S, Sandøy LB, Bless J, Lilleskare L, et al.. The phenomenology of auditory verbal hallucinations in schizophrenia assessed with the MiniVoiceQuestionnaire (MVQ). 2023. doi: 10.1101/2023.02.16.23285636 DOI
Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2(3):125–41. doi: 10.1089/brain.2012.0073 PubMed DOI
Elkins IJ, Cromwell RL. Priming effects in schizophrenia: associative interference and facilitation as a function of visual context. J Abnorm Psychol. 1994;103(4):791–800. doi: 10.1037//0021-843x.103.4.791 PubMed DOI
Kopp B, Mattler U, Rist F. Selective attention and response competition in schizophrenic patients. Psychiatry Res. 1994;53(2):129–39. doi: 10.1016/0165-1781(94)90104-x PubMed DOI