Voxel-based versus network-analysis of changes in brain states in patients with auditory verbal hallucinations using the Eriksen Flanker task

. 2025 ; 20 (3) : e0319925. [epub] 20250320

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40112006

The present functional magnetic resonance imaging (fMRI) study investigated neural correlates of switching between task-processing and periods of rest in a conventional ON-OFF block-design in patients with auditory verbal hallucinations (AVHs) and healthy controls. It has been proposed that auditory hallucinations are a failure of top-down control of bottom-up perceptual processes which could be due to aberrant up- and down regulation of brain networks. A version of the Eriksen Flanker task was used to assess cognitive flexibility and conflict control. BOLD fMRI with alternating blocks of task engagement and rest was collected using a 3T MR scanner. The objective of the study was to explore how patients would dynamically modulate relevant brain networks in response to shifting environmental demands, while transitioning from a resting state to active task-processing. Analysis of performance data found significant behavioral effects between the groups, where AVH patients performed the Flanker task significantly less accurately and with longer reaction times (RTs) than the healthy control group, indicating that AVH patients displayed reduced top-down guided conflict control. A network connectivity analysis of the fMRI data showed that both groups recruited similar networks related to task-present and task-absent conditions. However, the controls displayed increased network variability across task-present and task-absent conditions. This would indicate that the controls were better at switching between networks and conditions when demands changed from task-present to task-absent, with the consequence that they would perform the Flanker task better than the AVH patients.

Zobrazit více v PubMed

Hugdahl K. Auditory Hallucinations as Translational Psychiatry: Evidence from Magnetic Resonance Imaging. Balkan Med J. 2017;34(6):504–13. doi: 10.4274/balkanmedj.2017.1226 PubMed DOI PMC

Shinn AK, Wolff JD, Hwang M, Lebois LAM, Robinson MA, Winternitz SR, et al.. Assessing Voice Hearing in Trauma Spectrum Disorders: A Comparison of Two Measures and a Review of the Literature. Front Psychiatry. 2020;10:1011. doi: 10.3389/fpsyt.2019.01011 PubMed DOI PMC

Inzelberg R, Kipervasser S, Korczyn AD. Auditory hallucinations in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1998;64(4):533–5. doi: 10.1136/jnnp.64.4.533 PubMed DOI PMC

Shergill SS, Murray RM, McGuire PK. Auditory hallucinations: a review of psychological treatments. Schizophr Res. 1998;32(3):137–50. doi: 10.1016/s0920-9964(98)00052-8 PubMed DOI

Sartorius N, Shapiro R, Jablensky A. The international pilot study of schizophrenia. Schizophr Bull. 1974;(11):21–34. doi: 10.1093/schbul/1.11.21 PubMed DOI

Green M. Schizophrenia from a neurocognitive perspective: Probing the impenetrable darkness Needham Heights, MA, US: Allyn & Bacon; 1998. p. 190–190.

Oyebode F. Sims’ symptoms in the mind: Textbook of descriptive psychopathology. 5 ed: Elsevier Ltd; 2015.

Allen P, Aleman A, McGuire PK. Inner speech models of auditory verbal hallucinations: evidence from behavioural and neuroimaging studies. Int Rev Psychiatry. 2007;19(4):407–15. doi: 10.1080/09540260701486498 PubMed DOI

Badcock JC, Waters FAV, Maybery MT, Michie PT. Auditory hallucinations: failure to inhibit irrelevant memories. Cogn Neuropsychiatry. 2005;10(2):125–36. doi: 10.1080/13546800344000363 PubMed DOI

Waters FAV, Badcock JC, Michie PT, Maybery MT. Auditory hallucinations in schizophrenia: intrusive thoughts and forgotten memories. Cogn Neuropsychiatry. 2006;11(1):65–83. doi: 10.1080/13546800444000191 PubMed DOI

Hugdahl K. “Hearing voices”: auditory hallucinations as failure of top-down control of bottom-up perceptual processes. Scand J Psychol. 2009;50(6):553–60. doi: 10.1111/j.1467-9450.2009.00775.x PubMed DOI

Aleman A, Böcker KBE, Hijman R, de Haan EHF, Kahn RS. Cognitive basis of hallucinations in schizophrenia: role of top-down information processing. Schizophr Res. 2003;64(2–3):175–85. doi: 10.1016/s0920-9964(03)00060-4 PubMed DOI

Frith C. The neural basis of hallucinations and delusions. C R Biol. 2005;328(2):169–75. doi: 10.1016/j.crvi.2004.10.012 PubMed DOI

Hugdahl K, Løberg E-M, Specht K, Steen VM, van Wageningen H, Jørgensen HA. Auditory hallucinations in schizophrenia: the role of cognitive, brain structural and genetic disturbances in the left temporal lobe. Front Hum Neurosci. 2008;1:6. doi: 10.3389/neuro.09.006.2007 PubMed DOI PMC

Bâ MB, Curtis L, Pellizzer G. Viewer and object mental rotation in young adults with psychotic disorders. Schizophr Res. 2022;240:92–102. doi: 10.1016/j.schres.2021.12.040 PubMed DOI PMC

Brandt CL, Kaufmann T, Agartz I, Hugdahl K, Jensen J, Ueland T, et al.. Cognitive Effort and Schizophrenia Modulate Large-Scale Functional Brain Connectivity. Schizophr Bull. 2015;41(6):1360–9. doi: 10.1093/schbul/sbv013 PubMed DOI PMC

Ungar L, Nestor PG, Niznikiewicz MA, Wible CG, Kubicki M. Color Stroop and negative priming in schizophrenia: an fMRI study. Psychiatry Res. 2010;181(1):24–9. doi: 10.1016/j.pscychresns.2009.07.005 PubMed DOI PMC

Voegler R, Becker MPI, Nitsch A, Miltner WHR, Straube T. Aberrant network connectivity during error processing in patients with schizophrenia. J Psychiatry Neurosci. 2016;41(2):E3-12. doi: 10.1503/jpn.150092 PubMed DOI PMC

Westerhausen R, Kompus K, Hugdahl K. Impaired cognitive inhibition in schizophrenia: a meta-analysis of the Stroop interference effect. Schizophr Res. 2011;133(1–3):172–81. doi: 10.1016/j.schres.2011.08.025 PubMed DOI

Buckner RL. The brain’s default network: origins and implications for the study of psychosis. Dialogues Clin Neurosci. 2013;15(3):351–8. doi: 10.31887/DCNS.2013.15.3/rbuckner PubMed DOI PMC

Hugdahl K, Raichle ME, Mitra A, Specht K. On the existence of a generalized non-specific task-dependent network. Front Hum Neurosci. 2015;9:430. doi: 10.3389/fnhum.2015.00430 PubMed DOI PMC

Hugdahl K, Kazimierczak K, Beresniewicz J, Kompus K, Westerhausen R, Ersland L, et al.. Dynamic up- and down-regulation of the default (DMN) and extrinsic (EMN) mode networks during alternating task-on and task-off periods. PLoS One. 2019;14(9):e0218358. doi: 10.1371/journal.pone.0218358 PubMed DOI PMC

Riemer F, Grüner R, Beresniewicz J, Kazimierczak K, Ersland L, Hugdahl K. Dynamic switching between intrinsic and extrinsic mode networks as demands change from passive to active processing. Sci Rep. 2020;10(1):21463. doi: 10.1038/s41598-020-78579-6 PubMed DOI PMC

Allen P, Sommer IE, Jardri R, Eysenck MW, Hugdahl K. Extrinsic and default mode networks in psychiatric conditions: Relationship to excitatory-inhibitory transmitter balance and early trauma. Neurosci Biobehav Rev. 2019;99:90–100. doi: 10.1016/j.neubiorev.2019.02.004 PubMed DOI

Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC. Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry. 2009;66(8):811–22. doi: 10.1001/archgenpsychiatry.2009.91 PubMed DOI PMC

Nygård M, Eichele T, Løberg E-M, Jørgensen HA, Johnsen E, Kroken RA, et al.. Patients with Schizophrenia Fail to Up-Regulate Task-Positive and Down-Regulate Task-Negative Brain Networks: An fMRI Study Using an ICA Analysis Approach. Front Hum Neurosci. 2012;6:149. doi: 10.3389/fnhum.2012.00149 PubMed DOI PMC

Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics. 1974;16(1):143–9. doi: 10.3758/bf03203267 DOI

Westerhausen R, Kompus K, Hugdahl K. Unaffected control of distractor interference in schizophrenia: a meta-analysis of incompatibility slowing in flanker tasks. J Psychiatr Res. 2013;47(2):246–51. doi: 10.1016/j.jpsychires.2012.10.012 PubMed DOI

Panagiotaropoulou G, Thrapsanioti E, Pappa E, Grigoras C, Mylonas D, Karavasilis E, et al.. Hypo-activity of the dorsolateral prefrontal cortex relates to increased reaction time variability in patients with schizophrenia. Neuroimage Clin. 2019;23:101853. doi: 10.1016/j.nicl.2019.101853 PubMed DOI PMC

Eleni P, Georgia P, Constantine P, Efstratios K, Georgios V, Nikolaos K, et al.. Functional brain imaging of speeded decision processing in Parkinson’s disease and comparison with Schizophrenia. Psychiatry Res Neuroimaging. 2021;314:111312. doi: 10.1016/j.pscychresns.2021.111312 PubMed DOI

Smid HGOM, Bruggeman R, Martens S. Normal cognitive conflict resolution in psychosis patients with and without schizophrenia. J Abnorm Psychol. 2016;125(1):88–103. doi: 10.1037/abn0000123 PubMed DOI

Craven AR, Dwyer G, Ersland L, Kazimierczak K, Noeske R, Sandøy LB, et al.. GABA, glutamatergic dynamics and BOLD contrast assessed concurrently using functional MRS during a cognitive task. NMR Biomed. 2024;37(3):e5065. doi: 10.1002/nbm.5065 PubMed DOI

Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13(2):261–76. doi: 10.1093/schbul/13.2.261 PubMed DOI

Chandwick P, Lees S, Birchwood M. The revised Beliefs About Voices Questionnaire (BAVQ-R). Br J Psychiatry. 2000;177:229–32. doi: 10.1192/bjp.177.3.229 PubMed DOI

Hugdahl K, Hjelmervik H, Weber S, Sandøy LB, Bless J, Lilleskare L, et al.. The phenomenology of auditory verbal hallucinations in schizophrenia assessed with the MiniVoiceQuestionnaire (MVQ). 2023. doi: 10.1101/2023.02.16.23285636 DOI

Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2(3):125–41. doi: 10.1089/brain.2012.0073 PubMed DOI

Elkins IJ, Cromwell RL. Priming effects in schizophrenia: associative interference and facilitation as a function of visual context. J Abnorm Psychol. 1994;103(4):791–800. doi: 10.1037//0021-843x.103.4.791 PubMed DOI

Kopp B, Mattler U, Rist F. Selective attention and response competition in schizophrenic patients. Psychiatry Res. 1994;53(2):129–39. doi: 10.1016/0165-1781(94)90104-x PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...