Comparative diversity of aquatic plants in three Central European regions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40115949
PubMed Central
PMC11922903
DOI
10.3389/fpls.2025.1536731
Knihovny.cz E-zdroje
- Klíčová slova
- ditches, meta-analysis, nestedness, ponds, turnover, α, β, γ diversity,
- Publikační typ
- časopisecké články MeSH
Freshwaters are among the most threatened ecosystems globally, with biodiversity declining at far greater rates than the biodiversity of the most affected terrestrial ecosystems. There is an urgent need for accurate information on spatial patterns of freshwater biodiversity, a first step in effective conservation planning and management of these ecosystems. We explored patterns of aquatic macrophyte diversity in four waterbody types, rivers, streams, ponds and ditches, across three Central European regions. By analyzing local (α), among-site (β) and regional (γ) diversity, we assessed the roles of these ecosystems as biodiversity hotspots, particularly for red-listed species. Sampling 220 sites across Slovakia and Slovenia, we recorded 113 macrophyte taxa (31% of which were red-listed), with ponds and ditches consistently supporting higher α and γ diversity than running waters. β diversity was primarily driven by species turnover, with ponds displaying high heterogeneity linked to environmental variability. Our findings highlight the conservation value of artificial habitats like ditches and ponds, harbouring significant macrophyte diversity, including unique and threatened species. These results underscore the need to prioritize small waterbodies in biodiversity conservation strategies within agricultural landscapes.
Biotechnical Faculty University of Ljubljana Ljubljana Slovenia
Faculty of Ecology and Environmental Sciences Technical University in Zvolen Zvolen Slovakia
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Prague Czechia
Faculty of Forestry Technical University in Zvolen Zvolen Slovakia
Faculty of Natural Sciences University of Pavol Jozef Šafárik Košice Slovakia
Zobrazit více v PubMed
Alahuhta J., Heino J. (2013). Spatial extent, regional specificity and metacommunity structuring in lake macrophytes. J. Biogeogr. 40, 1572–1582. doi: 10.1111/jbi.2013.40.issue-8 DOI
Alahuhta J., Kosten S., Akasaka M., Auderset D., Azzella M. M., Bolpagni R., et al. . (2017). Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. J. Biogeogr. 44, 1758–1769. doi: 10.1111/jbi.2017.44.issue-8 DOI
Anderson M. J. (2006). Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253. doi: 10.1111/j.1541-0420.2005.00440.x PubMed DOI
Armitage P. D., Szoszkiewicz K., Blackburn J. H., Nesbitt I. (2003). Ditch communities: a major contributor to floodplain biodiversity. Aquat. Conserv.: Mar. Freshw. Ecosyst. 13, 165–185. doi: 10.1002/aqc.v13:2 DOI
Astorga A., Death R., Death F., Paavola R., Chakraborty M., Muotka T. (2014). Habitat heterogeneity drives the geographical distribution of beta diversity: the case of New Zealand stream invertebrates. Ecol. Evol. 4, 2693–2702. doi: 10.1002/ece3.2014.4.issue-13 PubMed DOI PMC
Baattrup-Pedersen A., Szoszkiewicz K., Nijboer R., O´Hare M., Ferreira T. (2006). Macrophyte communities in unimpacted European streams: variability in assemblage patterns, abundance and diversity. Hydrobiologia 566, 179–196. doi: 10.1007/s10750-006-0096-1 DOI
Baselga A. (2010). Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143. doi: 10.1111/j.1466-8238.2009.00490.x DOI
Baselga A. (2012). The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob. Ecol. Biogeogr. 21, 1223–1232. doi: 10.1111/j.1466-8238.2011.00756.x DOI
Baselga A., Orme D., Villeger S., De Bortoli J., Leprieur F., Logez M., et al. . (2023). betapart: Partitioning Beta Diversity into Turnover and Nestedness Components (R package version 1; ), 6.
Bezák P., Mitchley J. (2014). Drivers of change in mountain farming in Slovakia: from socialist collectivisation to the Common Agricultural Policy. Regional Environ. Change 14, 1343–1356. doi: 10.1007/s10113-013-0580-x DOI
Biggs J., Von Fumetti S., Kelly-Quinn M. (2017). The importance of small waterbodies for biodiversity and ecosystem services: Implications for policy makers. Hydrobiologia 793, 3–39. doi: 10.1007/s10750-016-3007-0 DOI
Biggs J., Williams P., Whitfield M., Nicolet P., Brown C., Hollis J., et al. . (2007). The freshwater biota of British agricultural landscapes and their sensitivity to pesticides. Agric. Ecosyst. Environ. 122, 137–148. doi: 10.1016/j.agee.2006.11.013 DOI
Biggs J., Williams P., Whitfield M., Nicolet P., Weatherby A. (2005). 15 years of ponds assesment in Britain: results and lessons learned from the work of Pond Conservation. Aquat. Conserv.: Mar. Freshw. Ecosyst. 15, 693–714. doi: 10.1002/aqc.745 DOI
Bilz M., Kell S. P., Maxted N., Lansdown R. V. (2011). European Red List of Vascular Plants (Luxembourg: Publications Office of the European Union; ).
Boix D., Biggs J., Hull A. P., Kalettka T., Oertli B. (2012). Pond research and management in Europe: ‘‘Small is Beautiful’’. Hydrobiologia 689, 1–9. doi: 10.1007/s10750-012-1015-2 DOI
Bolpagni R., Laini A., Stanzani C., Chiarucci A. (2018). Aquatic Plant Diversity in Italy: Distribution, Drivers and Strategic Conservation Actions. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.00116 PubMed DOI PMC
Bornette G., Amoros C., Lamouroux N. (1998). Aquatic plant diversity in riverine wetlands: The role of connectivity. Freshw. Biol. 39, 267–283. doi: 10.1046/j.1365-2427.1998.00273.x DOI
Bornette G., Piegay H., Citterio A., Amoros C., Godreau V. (2001). Aquatic plant diversity in four river floodplains: A comparison at two hierarchical levels. Biodiv. Conserv. 10, 1683–1701. doi: 10.1023/A:1012090501147 DOI
Bubíková K., Hrivnák R. (2018. a). Artificial ponds in Central Europe do not fall behind the natural ponds in terms of macrophyte diversity. Knowl. Manage. Aquat. Ecosyst. 419, 8. doi: 10.1051/kmae/2017055 DOI
Bubíková K., Hrivnák R. (2018. b). Comparative Macrophyte Diversity of Waterbodies in the Central European landscape. Wetlands 38, 451–459. doi: 10.1007/s13157-017-0987-0 DOI
Cervellini M., Zannini P., Di Musciano M., Fattorini S., Jimenez-Alfaro B., Rocchini D., et al. . (2020). A grid-based map for the Biogeographical Regions of Europe. Biodiv. Data J. 8, 53720. doi: 10.3897/BDJ.8.e53720 PubMed DOI PMC
Clarke S. J. (2015). Conserving freshwater biodiversity: the value, status and management of high-quality ditch systems. J. Nat. Conserv. 24, 93–100. doi: 10.1016/j.jnc.2014.10.003 DOI
Colwell R. K., Mao C. X., Chang J. (2004). Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85, 2717–2727. doi: 10.1890/03-0557 DOI
Cottenie K. (2005). Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett. 8, 1175–1182. doi: 10.1111/j.1461-0248.2005.00820.x PubMed DOI
Davies B. R., Biggs J., Williams P. J., Lee J. T., Thompson S. (2008. b). A comparison of the catchment sizes of rivers, streams, ponds, ditches and lakes: implications for protecting aquatic biodiversity in an agricultural landscape. Hydrobiologia 597, 7–17. doi: 10.1007/s10750-007-9227-6 DOI
Davies B., Biggs J., Williams P., Whitfield M., Nicolet P., Sear D., et al. . (2008. a). Comparative biodiversity of aquatic habitats in the European agricultural landscapes. Agric. Ecosyst. Environ. 125, 1–8. doi: 10.1016/j.agee.2007.10.006 DOI
Dorotovičová C. (2013). Man-made canals as a horspot of aquatic macrophyte biodiversity in Slovakia. Limnologica 43, 277–287. doi: 10.1016/j.limno.2012.12.002 DOI
Dudgeon D., Arthington A. H., Gessner M. O., Kawabata Z.-I., Knowler D. J., Lévêque C., et al. . (2006). Freshwater biodiversity: importance, threats status and conservation challenges. Biol. Rev. 81, 163–182. doi: 10.1017/S1464793105006950 PubMed DOI
Dulovičová R., Velísková Y. (2010). Aggradation of the irrigation canal network in Žitný Ostrov, Southern Slovakia. J. Irrig. Drain. Eng. 136, 421–428. doi: 10.1061/(ASCE)IR.1943-4774.0000190 DOI
Eliáš P., Jr., Dítě D., Kliment J., Hrivnák R., Feráková V. (2015). Red list of ferns and flowering plants of Slovakia, 5th edn (October 2014). Biologia 70, 218–228. doi: 10.1515/biolog-2015-0018 DOI
Fernández-Aláez M., García-Criado F., García-Girón J., Santiago F., Fernández-Aláez C. (2020). Environmental heterogeneity drives macrophyte beta diversity patterns in permanent and temporary ponds in an agricultural landscape. Aquat. Sci. 82, 20. doi: 10.1007/s00027-020-0694-4 DOI
Fois M., Cuena-Lombraña A., Artufel M., Attard V., Cambria S., Farrugia K., et al. . (2024). Plant distribution and conservation in mediterranean islands’ lentic wetlands: there is more than aquatic species. Biodivers. Conserv. 33, 1373–1392. doi: 10.1007/s10531-024-02803-2 DOI
Germ M., Bajc Tomšič M., Zelnik I., Ojdanič N., Golob A. (2024). Aquatic Plants in Ponds at the Brdo Estate (Slovenia) Show Changes in 20 Years. Plants 13, 2439. doi: 10.3390/plants13172439 PubMed DOI PMC
Gioria M., Schaffers A., Bacaro G., Feehan J. (2012). The conservation value of farmland ponds: Predicting water beetle assemblages using vascular plants as a surrogate group. Biol. Conserv. 143, 1125–1133. doi: 10.1016/j.biocon.2010.02.007 DOI
Hamerlík L., Svitok M., Novikmec M., Očadlík M., Bitušík P. (2014). Local, among-site, and regional diversity patterns of benthic macroinvertebrates in high-altitude waterbodies: Do ponds differ from lakes? Hydrobiologia 723, 41–52. doi: 10.1007/s10750-013-1621-7 DOI
Heino J. (2011). A macroecological perspective of diversity patterns in the freshwater realm. Freshw. Biol. 56, 1703–1722. doi: 10.1111/j.1365-2427.2011.02610.x DOI
Herzon I., Helenius J. (2008). Agricultural drainage ditches, their biological importance and functioning. Biol. Conserv. 141, 1171–1183. doi: 10.1016/j.biocon.2008.03.005 DOI
Higgins J. P. T., Green S. (2011). Cochrane Handbook for Systematic Reviews of Interventions (The Cochrane Collaboration; ).
Hilbe J. M. (2011). Negative binomial regression (Cambridge University Press; ).
Hill M. J., Greaves H. M., Sayer C. D., Hassall C., Milin M., Milner V. S., et al. . (2021). Pond ecology and conservation: research priorities and knowledge gaps. Ecosphere 12, 03853. doi: 10.1002/ecs2.3853 DOI
Hill M. J., Hassall C., Oertli B., Fahrig L., Robson B. J., Biggs J., et al. . (2018). New policy directions for global pond conservation. Conserv. Lett. 11, 12447. doi: 10.1111/conl.12447 DOI
Hrivnák R., Oťaheľová H., Valachovič M., Paľove-Balang P., Kubinská A. (2010). Effect of environmental variables on the aquatic macrophyte composition pattern in streams: a case study from Slovakia. Fundam. Appl. Limnol. 177, 115–124. doi: 10.1127/1863-9135/2010/0177-0115 DOI
Hsieh T. C., Ma K. H., Chao A. (2022). iNEXT: iNterpolation and EXTrapolation for species diversity (R package version 3.0.0; ).
Janauer G. A., Dokulil M. (2006). “Macrophytes and algae in running waters,” in Biological monitoring of rivers. Eds. Ziglio G., Siligardi M., Flaim G. (John Wiley & Sons, Ltd; ), 89–109.
Jeffries M. (2008). The spatial and temporal heterogeneity of macrophyte communities in thirty small, temporary ponds over a period of ten years. Ecography 31, 765–775. doi: 10.1111/j.0906-7590.2008.05487.x DOI
Jones P. E., Consuegra S., Börger L., Jones J., Garcia de Leaniz C. (2020). Impacts of artificial barriers on the connectivity and dispersal of vascular macrophytes in rivers: A critical review. Freshw. Biol. 65, 1165–1180. doi: 10.1111/fwb.13493 DOI
Lacoul P., Freedman B. (2006). Environmental influences on aquatic plants in freshwater ecosystems. Environ. Rev. 14, 89–136. doi: 10.1139/a06-001 DOI
Law A., Baker A., Sayer C. D., Foster G., Gunn I. D. M., Macadam C. R., et al. . (2024). Repeatable patterns in the distribution of freshwater biodiversity indicators across contrasting landscapes. Landsc Ecol. 39, 195. doi: 10.1007/s10980-024-01992-z DOI
Law A., Baker A., Sayer C., Foster G., Gunn I. D. M., Taylor P., et al. . (2019). The effectiveness of aquatic plants as surrogates for wider biodiversity in standing fresh waters. Freshw. Biol. 64, 1664–1675. doi: 10.1111/fwb.13369 DOI
Leibold M. A., Holyoak M., Mouquet N., Amarasekare P., Chase J. M., Hoopes M. F., et al. . (2004). The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613. doi: 10.1111/j.1461-0248.2004.00608.x DOI
Lenth R. V. (2016). Least-squares means: the R package lsmeans. J. Stat.Softw. 69, 1–33. doi: 10.18637/jss.v069.i01 DOI
Lenth R. (2023). emmeans: Estimated Marginal Means, aka Least-Squares Means (R package version 1.8; ), 4–1.
Leprieur F., Tedesco P. A., Hugueny B., Beauchard O., Dürr H. H., Brosse S., et al. . (2011). Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecol. Lett. 14, 325–334. doi: 10.1111/j.1461-0248.2011.01589.x PubMed DOI
Lin H.-Y., Cooke S. J., Wolter C., Young N., Bennett J. R. (2020). On the conservation value of historic canals for aquatic ecosystems. Biol. Conserv. 251, 108764. doi: 10.1016/j.biocon.2020.108764 DOI
Linton S., Goulder R. (2000). Botanical conservation value related to origin and management of ponds. Aquat. Conserv.: Mar. Freshw. Ecosyst. 10, 77–91.
Lukács B. A., Sramkó G., Molnár A. V. (2013). Plant diversity and conservation value of continental temporary pools. Biol. Conserv. 158, 393–400. doi: 10.1016/j.biocon.2012.08.024 DOI
Magurran A. E. (2003). Measuring biological diversity (John Wiley & Sons; ).
Manly B. F. (2007). Randomization, bootstrap and Monte Carlo methods in biology, 3rd edition (Chapman and Hall/CRC; ).
McCullagh P., Nelder J. A. (1989). Generalized Linear Models. 2nd edition (Boca Raton: Chapman & Hall/CRC; ).
Millennium Ecosystem Assessment (2005). Ecosystems and human well-being _ synthesis (Washington DC: Island Press; ).
Milsom T. P., Sherwood A. J., Rose S. C., Town S. J., Runham S. R. (2004). Dynamics and management of plant communities in ditches bordering arable fenland in eastern England. Agric. Ecosyst. Environ. 103, 85–99. doi: 10.1016/j.agee.2003.10.012 DOI
Novikmec M., Hamerlík L., Kočický D., Hrivnák R., Kochjarová J., Oťaheľová H., et al. . (2016). Ponds and their catchments: Size relationships and influence of land use across multiple spatial scales. Hydrobiologia 774, 155–166. doi: 10.1007/s10750-015-2514-8 DOI
Oksanen J., Simpson G., Blanchet F. G., Kindt R., Legendre P., Minchin P., et al. . (2022). vegan: Community Ecology Package (R package version 2; ), 6–4.
Oťaheľová H., Valachovič M. (2002). Effects of the Gabčíkovo hydroelectric-station on the aquatic vegetation of the Danube River (Slovakia). Preslia 74, 323–331.
Oťaheľová H., Valachovič M., Hrivnák R. (2007). The impact of environmental factors on the distribution pattern of aquatic plants along the Danube River corridor (Slovakia). Limnologica 37, 290–302. doi: 10.1016/j.limno.2007.07.003 DOI
R Core Team (2022). R: A language and environment for statistical computing (Vienna: R Foundation for Statistical Computing; ).
Reid A. J., Carlson A. K., Creed I. F., Eliason E. J., Gell P. A., Johnson P. T. J., et al. . (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873. doi: 10.1111/brv.2019.94.issue-3 PubMed DOI
Rhazi L., Grillas P., Saber E. R., Rhazi M., Brendonck L., Waterkeyn A. (2012). Vegetation of Mediterranean temporary pools: a fading jewel? Hydrobiologia 689, 23–36. doi: 10.1007/s10750-011-0679-3 DOI
Ricciardi A., Rasmussen J. B. (1999). Extinction rates of North American freshwater fauna. Conserv. Biol. 13, 1220–1222. doi: 10.1046/j.1523-1739.1999.98380.x DOI
Sala O. E., Chapin F. S., Armesto J. J., Berlow R., Bloomfield J., Dirzo R., et al. . (2000). Global biodiversity scenarios for the year 2100. Science 287, 1770–1774. doi: 10.1126/science.287.5459.1770 PubMed DOI
Santamaría L. (2002). Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol. 23, 137–154. doi: 10.1016/S1146-609X(02)01146-3 DOI
Scheffer M., Van Geest G. J., Zimmer K., Jeppesen E., Søndergaard M., Butler M. G., et al. . (2006). Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 112, 227–231. doi: 10.1111/j.0030-1299.2006.14145.x DOI
Sipos V. K., Kohler A., Köder M., Janauer G. (2003). Macrophyte vegetation of Danube canals in Kiskunság (Hungary). Arch. Hydriobiol. Suppl. 14, 143–166. doi: 10.1127/lr/14/2003/143 DOI
Suurkuukka H., Meissner K. K., Muotka T. (2012). Species turnover in lake littorals: Spatial and temporal variation of benthic macroinvertebrate diversity and community composition. Divers. Distrib. 18, 931–941. doi: 10.1111/j.1472-4642.2012.00889.x DOI
Svitok M., Hrivnák R., Kochjarová J., Oťaheľová H., Paľove-Balang P. (2016). Environmental thresholds and predictors of macrophyte species richness in aquatic habitats in central Europe. Folia Geobot. 51, 227–238. doi: 10.1007/s12224-015-9211-2 DOI
Svitok M., Hrivnák R., Oťaheľová H., Dúbravková D., Paľove-Balang P., Slobodník V. (2011). The importance of local and regional factors on the vegetation of created wetlands in Central Europe. Wetlands 31, 663–674. doi: 10.1007/s13157-011-0182-7 DOI
Tockner K., Schiemer F., Ward J. V. (1998). Conservation by restoration: The management concept for a river-floodplain system on the Danube River in Austria. Aquat. Conserv.: Mar. Freshw. Ecosyst. 8, 71–86. doi: 10.1002/(SICI)1099-0755(199801/02)8:1<71::AID-AQC265>3.0.CO;2-D DOI
Ulrich W., Almeida-Neto M., Gotelli N. J. (2009). A consumer's guide to nestedness analysis. Oikos 118, 3–17. doi: 10.1111/j.1600-0706.2008.17053.x DOI
Venables W. N., Ripley B. D. (2002). Modern Applied Statistics with S. 4th ed. (New York: Springer; ).
Verdonschot R. C., Keizer-vlek H. E., Verdonschot P. F. (2011). Biodiversity value of agricultural drainage ditches: a comparative analysis of the aquatic invertebrate fauna of ditches and small lakes. Aquat. Conservation: Mar. Freshw. Ecosyst. 21, 715–727. doi: 10.1002/aqc.1220 DOI
Weiher E., Keddy P. A. (1995). The assembly of experimental wetland plant communities. Oikos 73, 323–335. doi: 10.2307/3545956 DOI
Wickham H. (2016). ggplot2: Elegant Graphics for Data Analysis (New York: Springer-Verlag; ).
Wiens J. A., Stenseth N. C., Van Horne B., Ims R. A. (1993). Ecological mechanisms and landscape ecology. Oikos 66, 369–380. doi: 10.2307/3544931 DOI
Williams P., Whitfield M., Biggs J., Bray S., Fox G., Nicolet P., et al. . (2004). Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 115, 329–341. doi: 10.1016/S0006-3207(03)00153-8 DOI
Williams-Subiza E. A., Epele L. B. (2021). Drivers of biodiversity loss in freshwater environments: A bibliometric analysis of the recent literature. Aquat. Conserv.: Mar. Freshw. Ecosyst. 31, 2469–2480. doi: 10.1002/aqc.3627 DOI
Wright D. H., Patterson B. D., Mikkelson G. M., Cutler A., Atmar W. (1997). A comparative analysis of nested subset patterns of species composition. Oecologia 113, 1–20. doi: 10.1007/s004420050348 PubMed DOI
Zelnik I., Gregorič N., Tratnik A. (2018). Diversity of macroinvertebrates positively correlates with diversity of macrophytes in karst ponds. Ecol. Eng. 117, 96–103. doi: 10.1016/j.ecoleng.2018.03.019 DOI
Zelnik I., Potisek M., Gaberščik A. (2012). Environmental conditions and macrophytes of karst ponds. Polish J. Environ. Stud. 21, 1911–1920.