Comparative diversity of aquatic plants in three Central European regions

. 2025 ; 16 () : 1536731. [epub] 20250306

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40115949

Freshwaters are among the most threatened ecosystems globally, with biodiversity declining at far greater rates than the biodiversity of the most affected terrestrial ecosystems. There is an urgent need for accurate information on spatial patterns of freshwater biodiversity, a first step in effective conservation planning and management of these ecosystems. We explored patterns of aquatic macrophyte diversity in four waterbody types, rivers, streams, ponds and ditches, across three Central European regions. By analyzing local (α), among-site (β) and regional (γ) diversity, we assessed the roles of these ecosystems as biodiversity hotspots, particularly for red-listed species. Sampling 220 sites across Slovakia and Slovenia, we recorded 113 macrophyte taxa (31% of which were red-listed), with ponds and ditches consistently supporting higher α and γ diversity than running waters. β diversity was primarily driven by species turnover, with ponds displaying high heterogeneity linked to environmental variability. Our findings highlight the conservation value of artificial habitats like ditches and ponds, harbouring significant macrophyte diversity, including unique and threatened species. These results underscore the need to prioritize small waterbodies in biodiversity conservation strategies within agricultural landscapes.

Zobrazit více v PubMed

Alahuhta J., Heino J. (2013). Spatial extent, regional specificity and metacommunity structuring in lake macrophytes. J. Biogeogr. 40, 1572–1582. doi: 10.1111/jbi.2013.40.issue-8 DOI

Alahuhta J., Kosten S., Akasaka M., Auderset D., Azzella M. M., Bolpagni R., et al. . (2017). Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. J. Biogeogr. 44, 1758–1769. doi: 10.1111/jbi.2017.44.issue-8 DOI

Anderson M. J. (2006). Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253. doi: 10.1111/j.1541-0420.2005.00440.x PubMed DOI

Armitage P. D., Szoszkiewicz K., Blackburn J. H., Nesbitt I. (2003). Ditch communities: a major contributor to floodplain biodiversity. Aquat. Conserv.: Mar. Freshw. Ecosyst. 13, 165–185. doi: 10.1002/aqc.v13:2 DOI

Astorga A., Death R., Death F., Paavola R., Chakraborty M., Muotka T. (2014). Habitat heterogeneity drives the geographical distribution of beta diversity: the case of New Zealand stream invertebrates. Ecol. Evol. 4, 2693–2702. doi: 10.1002/ece3.2014.4.issue-13 PubMed DOI PMC

Baattrup-Pedersen A., Szoszkiewicz K., Nijboer R., O´Hare M., Ferreira T. (2006). Macrophyte communities in unimpacted European streams: variability in assemblage patterns, abundance and diversity. Hydrobiologia 566, 179–196. doi: 10.1007/s10750-006-0096-1 DOI

Baselga A. (2010). Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143. doi: 10.1111/j.1466-8238.2009.00490.x DOI

Baselga A. (2012). The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob. Ecol. Biogeogr. 21, 1223–1232. doi: 10.1111/j.1466-8238.2011.00756.x DOI

Baselga A., Orme D., Villeger S., De Bortoli J., Leprieur F., Logez M., et al. . (2023). betapart: Partitioning Beta Diversity into Turnover and Nestedness Components (R package version 1; ), 6.

Bezák P., Mitchley J. (2014). Drivers of change in mountain farming in Slovakia: from socialist collectivisation to the Common Agricultural Policy. Regional Environ. Change 14, 1343–1356. doi: 10.1007/s10113-013-0580-x DOI

Biggs J., Von Fumetti S., Kelly-Quinn M. (2017). The importance of small waterbodies for biodiversity and ecosystem services: Implications for policy makers. Hydrobiologia 793, 3–39. doi: 10.1007/s10750-016-3007-0 DOI

Biggs J., Williams P., Whitfield M., Nicolet P., Brown C., Hollis J., et al. . (2007). The freshwater biota of British agricultural landscapes and their sensitivity to pesticides. Agric. Ecosyst. Environ. 122, 137–148. doi: 10.1016/j.agee.2006.11.013 DOI

Biggs J., Williams P., Whitfield M., Nicolet P., Weatherby A. (2005). 15 years of ponds assesment in Britain: results and lessons learned from the work of Pond Conservation. Aquat. Conserv.: Mar. Freshw. Ecosyst. 15, 693–714. doi: 10.1002/aqc.745 DOI

Bilz M., Kell S. P., Maxted N., Lansdown R. V. (2011). European Red List of Vascular Plants (Luxembourg: Publications Office of the European Union; ).

Boix D., Biggs J., Hull A. P., Kalettka T., Oertli B. (2012). Pond research and management in Europe: ‘‘Small is Beautiful’’. Hydrobiologia 689, 1–9. doi: 10.1007/s10750-012-1015-2 DOI

Bolpagni R., Laini A., Stanzani C., Chiarucci A. (2018). Aquatic Plant Diversity in Italy: Distribution, Drivers and Strategic Conservation Actions. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.00116 PubMed DOI PMC

Bornette G., Amoros C., Lamouroux N. (1998). Aquatic plant diversity in riverine wetlands: The role of connectivity. Freshw. Biol. 39, 267–283. doi: 10.1046/j.1365-2427.1998.00273.x DOI

Bornette G., Piegay H., Citterio A., Amoros C., Godreau V. (2001). Aquatic plant diversity in four river floodplains: A comparison at two hierarchical levels. Biodiv. Conserv. 10, 1683–1701. doi: 10.1023/A:1012090501147 DOI

Bubíková K., Hrivnák R. (2018. a). Artificial ponds in Central Europe do not fall behind the natural ponds in terms of macrophyte diversity. Knowl. Manage. Aquat. Ecosyst. 419, 8. doi: 10.1051/kmae/2017055 DOI

Bubíková K., Hrivnák R. (2018. b). Comparative Macrophyte Diversity of Waterbodies in the Central European landscape. Wetlands 38, 451–459. doi: 10.1007/s13157-017-0987-0 DOI

Cervellini M., Zannini P., Di Musciano M., Fattorini S., Jimenez-Alfaro B., Rocchini D., et al. . (2020). A grid-based map for the Biogeographical Regions of Europe. Biodiv. Data J. 8, 53720. doi: 10.3897/BDJ.8.e53720 PubMed DOI PMC

Clarke S. J. (2015). Conserving freshwater biodiversity: the value, status and management of high-quality ditch systems. J. Nat. Conserv. 24, 93–100. doi: 10.1016/j.jnc.2014.10.003 DOI

Colwell R. K., Mao C. X., Chang J. (2004). Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85, 2717–2727. doi: 10.1890/03-0557 DOI

Cottenie K. (2005). Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett. 8, 1175–1182. doi: 10.1111/j.1461-0248.2005.00820.x PubMed DOI

Davies B. R., Biggs J., Williams P. J., Lee J. T., Thompson S. (2008. b). A comparison of the catchment sizes of rivers, streams, ponds, ditches and lakes: implications for protecting aquatic biodiversity in an agricultural landscape. Hydrobiologia 597, 7–17. doi: 10.1007/s10750-007-9227-6 DOI

Davies B., Biggs J., Williams P., Whitfield M., Nicolet P., Sear D., et al. . (2008. a). Comparative biodiversity of aquatic habitats in the European agricultural landscapes. Agric. Ecosyst. Environ. 125, 1–8. doi: 10.1016/j.agee.2007.10.006 DOI

Dorotovičová C. (2013). Man-made canals as a horspot of aquatic macrophyte biodiversity in Slovakia. Limnologica 43, 277–287. doi: 10.1016/j.limno.2012.12.002 DOI

Dudgeon D., Arthington A. H., Gessner M. O., Kawabata Z.-I., Knowler D. J., Lévêque C., et al. . (2006). Freshwater biodiversity: importance, threats status and conservation challenges. Biol. Rev. 81, 163–182. doi: 10.1017/S1464793105006950 PubMed DOI

Dulovičová R., Velísková Y. (2010). Aggradation of the irrigation canal network in Žitný Ostrov, Southern Slovakia. J. Irrig. Drain. Eng. 136, 421–428. doi: 10.1061/(ASCE)IR.1943-4774.0000190 DOI

Eliáš P., Jr., Dítě D., Kliment J., Hrivnák R., Feráková V. (2015). Red list of ferns and flowering plants of Slovakia, 5th edn (October 2014). Biologia 70, 218–228. doi: 10.1515/biolog-2015-0018 DOI

Fernández-Aláez M., García-Criado F., García-Girón J., Santiago F., Fernández-Aláez C. (2020). Environmental heterogeneity drives macrophyte beta diversity patterns in permanent and temporary ponds in an agricultural landscape. Aquat. Sci. 82, 20. doi: 10.1007/s00027-020-0694-4 DOI

Fois M., Cuena-Lombraña A., Artufel M., Attard V., Cambria S., Farrugia K., et al. . (2024). Plant distribution and conservation in mediterranean islands’ lentic wetlands: there is more than aquatic species. Biodivers. Conserv. 33, 1373–1392. doi: 10.1007/s10531-024-02803-2 DOI

Germ M., Bajc Tomšič M., Zelnik I., Ojdanič N., Golob A. (2024). Aquatic Plants in Ponds at the Brdo Estate (Slovenia) Show Changes in 20 Years. Plants 13, 2439. doi: 10.3390/plants13172439 PubMed DOI PMC

Gioria M., Schaffers A., Bacaro G., Feehan J. (2012). The conservation value of farmland ponds: Predicting water beetle assemblages using vascular plants as a surrogate group. Biol. Conserv. 143, 1125–1133. doi: 10.1016/j.biocon.2010.02.007 DOI

Hamerlík L., Svitok M., Novikmec M., Očadlík M., Bitušík P. (2014). Local, among-site, and regional diversity patterns of benthic macroinvertebrates in high-altitude waterbodies: Do ponds differ from lakes? Hydrobiologia 723, 41–52. doi: 10.1007/s10750-013-1621-7 DOI

Heino J. (2011). A macroecological perspective of diversity patterns in the freshwater realm. Freshw. Biol. 56, 1703–1722. doi: 10.1111/j.1365-2427.2011.02610.x DOI

Herzon I., Helenius J. (2008). Agricultural drainage ditches, their biological importance and functioning. Biol. Conserv. 141, 1171–1183. doi: 10.1016/j.biocon.2008.03.005 DOI

Higgins J. P. T., Green S. (2011). Cochrane Handbook for Systematic Reviews of Interventions (The Cochrane Collaboration; ).

Hilbe J. M. (2011). Negative binomial regression (Cambridge University Press; ).

Hill M. J., Greaves H. M., Sayer C. D., Hassall C., Milin M., Milner V. S., et al. . (2021). Pond ecology and conservation: research priorities and knowledge gaps. Ecosphere 12, 03853. doi: 10.1002/ecs2.3853 DOI

Hill M. J., Hassall C., Oertli B., Fahrig L., Robson B. J., Biggs J., et al. . (2018). New policy directions for global pond conservation. Conserv. Lett. 11, 12447. doi: 10.1111/conl.12447 DOI

Hrivnák R., Oťaheľová H., Valachovič M., Paľove-Balang P., Kubinská A. (2010). Effect of environmental variables on the aquatic macrophyte composition pattern in streams: a case study from Slovakia. Fundam. Appl. Limnol. 177, 115–124. doi: 10.1127/1863-9135/2010/0177-0115 DOI

Hsieh T. C., Ma K. H., Chao A. (2022). iNEXT: iNterpolation and EXTrapolation for species diversity (R package version 3.0.0; ).

Janauer G. A., Dokulil M. (2006). “Macrophytes and algae in running waters,” in Biological monitoring of rivers. Eds. Ziglio G., Siligardi M., Flaim G. (John Wiley & Sons, Ltd; ), 89–109.

Jeffries M. (2008). The spatial and temporal heterogeneity of macrophyte communities in thirty small, temporary ponds over a period of ten years. Ecography 31, 765–775. doi: 10.1111/j.0906-7590.2008.05487.x DOI

Jones P. E., Consuegra S., Börger L., Jones J., Garcia de Leaniz C. (2020). Impacts of artificial barriers on the connectivity and dispersal of vascular macrophytes in rivers: A critical review. Freshw. Biol. 65, 1165–1180. doi: 10.1111/fwb.13493 DOI

Lacoul P., Freedman B. (2006). Environmental influences on aquatic plants in freshwater ecosystems. Environ. Rev. 14, 89–136. doi: 10.1139/a06-001 DOI

Law A., Baker A., Sayer C. D., Foster G., Gunn I. D. M., Macadam C. R., et al. . (2024). Repeatable patterns in the distribution of freshwater biodiversity indicators across contrasting landscapes. Landsc Ecol. 39, 195. doi: 10.1007/s10980-024-01992-z DOI

Law A., Baker A., Sayer C., Foster G., Gunn I. D. M., Taylor P., et al. . (2019). The effectiveness of aquatic plants as surrogates for wider biodiversity in standing fresh waters. Freshw. Biol. 64, 1664–1675. doi: 10.1111/fwb.13369 DOI

Leibold M. A., Holyoak M., Mouquet N., Amarasekare P., Chase J. M., Hoopes M. F., et al. . (2004). The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613. doi: 10.1111/j.1461-0248.2004.00608.x DOI

Lenth R. V. (2016). Least-squares means: the R package lsmeans. J. Stat.Softw. 69, 1–33. doi: 10.18637/jss.v069.i01 DOI

Lenth R. (2023). emmeans: Estimated Marginal Means, aka Least-Squares Means (R package version 1.8; ), 4–1.

Leprieur F., Tedesco P. A., Hugueny B., Beauchard O., Dürr H. H., Brosse S., et al. . (2011). Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecol. Lett. 14, 325–334. doi: 10.1111/j.1461-0248.2011.01589.x PubMed DOI

Lin H.-Y., Cooke S. J., Wolter C., Young N., Bennett J. R. (2020). On the conservation value of historic canals for aquatic ecosystems. Biol. Conserv. 251, 108764. doi: 10.1016/j.biocon.2020.108764 DOI

Linton S., Goulder R. (2000). Botanical conservation value related to origin and management of ponds. Aquat. Conserv.: Mar. Freshw. Ecosyst. 10, 77–91.

Lukács B. A., Sramkó G., Molnár A. V. (2013). Plant diversity and conservation value of continental temporary pools. Biol. Conserv. 158, 393–400. doi: 10.1016/j.biocon.2012.08.024 DOI

Magurran A. E. (2003). Measuring biological diversity (John Wiley & Sons; ).

Manly B. F. (2007). Randomization, bootstrap and Monte Carlo methods in biology, 3rd edition (Chapman and Hall/CRC; ).

McCullagh P., Nelder J. A. (1989). Generalized Linear Models. 2nd edition (Boca Raton: Chapman & Hall/CRC; ).

Millennium Ecosystem Assessment (2005). Ecosystems and human well-being _ synthesis (Washington DC: Island Press; ).

Milsom T. P., Sherwood A. J., Rose S. C., Town S. J., Runham S. R. (2004). Dynamics and management of plant communities in ditches bordering arable fenland in eastern England. Agric. Ecosyst. Environ. 103, 85–99. doi: 10.1016/j.agee.2003.10.012 DOI

Novikmec M., Hamerlík L., Kočický D., Hrivnák R., Kochjarová J., Oťaheľová H., et al. . (2016). Ponds and their catchments: Size relationships and influence of land use across multiple spatial scales. Hydrobiologia 774, 155–166. doi: 10.1007/s10750-015-2514-8 DOI

Oksanen J., Simpson G., Blanchet F. G., Kindt R., Legendre P., Minchin P., et al. . (2022). vegan: Community Ecology Package (R package version 2; ), 6–4.

Oťaheľová H., Valachovič M. (2002). Effects of the Gabčíkovo hydroelectric-station on the aquatic vegetation of the Danube River (Slovakia). Preslia 74, 323–331.

Oťaheľová H., Valachovič M., Hrivnák R. (2007). The impact of environmental factors on the distribution pattern of aquatic plants along the Danube River corridor (Slovakia). Limnologica 37, 290–302. doi: 10.1016/j.limno.2007.07.003 DOI

R Core Team (2022). R: A language and environment for statistical computing (Vienna: R Foundation for Statistical Computing; ).

Reid A. J., Carlson A. K., Creed I. F., Eliason E. J., Gell P. A., Johnson P. T. J., et al. . (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873. doi: 10.1111/brv.2019.94.issue-3 PubMed DOI

Rhazi L., Grillas P., Saber E. R., Rhazi M., Brendonck L., Waterkeyn A. (2012). Vegetation of Mediterranean temporary pools: a fading jewel? Hydrobiologia 689, 23–36. doi: 10.1007/s10750-011-0679-3 DOI

Ricciardi A., Rasmussen J. B. (1999). Extinction rates of North American freshwater fauna. Conserv. Biol. 13, 1220–1222. doi: 10.1046/j.1523-1739.1999.98380.x DOI

Sala O. E., Chapin F. S., Armesto J. J., Berlow R., Bloomfield J., Dirzo R., et al. . (2000). Global biodiversity scenarios for the year 2100. Science 287, 1770–1774. doi: 10.1126/science.287.5459.1770 PubMed DOI

Santamaría L. (2002). Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol. 23, 137–154. doi: 10.1016/S1146-609X(02)01146-3 DOI

Scheffer M., Van Geest G. J., Zimmer K., Jeppesen E., Søndergaard M., Butler M. G., et al. . (2006). Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 112, 227–231. doi: 10.1111/j.0030-1299.2006.14145.x DOI

Sipos V. K., Kohler A., Köder M., Janauer G. (2003). Macrophyte vegetation of Danube canals in Kiskunság (Hungary). Arch. Hydriobiol. Suppl. 14, 143–166. doi: 10.1127/lr/14/2003/143 DOI

Suurkuukka H., Meissner K. K., Muotka T. (2012). Species turnover in lake littorals: Spatial and temporal variation of benthic macroinvertebrate diversity and community composition. Divers. Distrib. 18, 931–941. doi: 10.1111/j.1472-4642.2012.00889.x DOI

Svitok M., Hrivnák R., Kochjarová J., Oťaheľová H., Paľove-Balang P. (2016). Environmental thresholds and predictors of macrophyte species richness in aquatic habitats in central Europe. Folia Geobot. 51, 227–238. doi: 10.1007/s12224-015-9211-2 DOI

Svitok M., Hrivnák R., Oťaheľová H., Dúbravková D., Paľove-Balang P., Slobodník V. (2011). The importance of local and regional factors on the vegetation of created wetlands in Central Europe. Wetlands 31, 663–674. doi: 10.1007/s13157-011-0182-7 DOI

Tockner K., Schiemer F., Ward J. V. (1998). Conservation by restoration: The management concept for a river-floodplain system on the Danube River in Austria. Aquat. Conserv.: Mar. Freshw. Ecosyst. 8, 71–86. doi: 10.1002/(SICI)1099-0755(199801/02)8:1<71::AID-AQC265>3.0.CO;2-D DOI

Ulrich W., Almeida-Neto M., Gotelli N. J. (2009). A consumer's guide to nestedness analysis. Oikos 118, 3–17. doi: 10.1111/j.1600-0706.2008.17053.x DOI

Venables W. N., Ripley B. D. (2002). Modern Applied Statistics with S. 4th ed. (New York: Springer; ).

Verdonschot R. C., Keizer-vlek H. E., Verdonschot P. F. (2011). Biodiversity value of agricultural drainage ditches: a comparative analysis of the aquatic invertebrate fauna of ditches and small lakes. Aquat. Conservation: Mar. Freshw. Ecosyst. 21, 715–727. doi: 10.1002/aqc.1220 DOI

Weiher E., Keddy P. A. (1995). The assembly of experimental wetland plant communities. Oikos 73, 323–335. doi: 10.2307/3545956 DOI

Wickham H. (2016). ggplot2: Elegant Graphics for Data Analysis (New York: Springer-Verlag; ).

Wiens J. A., Stenseth N. C., Van Horne B., Ims R. A. (1993). Ecological mechanisms and landscape ecology. Oikos 66, 369–380. doi: 10.2307/3544931 DOI

Williams P., Whitfield M., Biggs J., Bray S., Fox G., Nicolet P., et al. . (2004). Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 115, 329–341. doi: 10.1016/S0006-3207(03)00153-8 DOI

Williams-Subiza E. A., Epele L. B. (2021). Drivers of biodiversity loss in freshwater environments: A bibliometric analysis of the recent literature. Aquat. Conserv.: Mar. Freshw. Ecosyst. 31, 2469–2480. doi: 10.1002/aqc.3627 DOI

Wright D. H., Patterson B. D., Mikkelson G. M., Cutler A., Atmar W. (1997). A comparative analysis of nested subset patterns of species composition. Oecologia 113, 1–20. doi: 10.1007/s004420050348 PubMed DOI

Zelnik I., Gregorič N., Tratnik A. (2018). Diversity of macroinvertebrates positively correlates with diversity of macrophytes in karst ponds. Ecol. Eng. 117, 96–103. doi: 10.1016/j.ecoleng.2018.03.019 DOI

Zelnik I., Potisek M., Gaberščik A. (2012). Environmental conditions and macrophytes of karst ponds. Polish J. Environ. Stud. 21, 1911–1920.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...