Development and validation of pan-cancer lesion segmentation AI-model for whole-body 18F-FDG PET/CT in diverse clinical cohorts
Language English Country United States Media print-electronic
Document type Journal Article, Validation Study
Grant support
Z99 CA999999
Intramural NIH HHS - United States
PubMed
40127518
PubMed Central
PMC12107610
DOI
10.1016/j.compbiomed.2025.110052
PII: S0010-4825(25)00403-2
Knihovny.cz E-resources
- Keywords
- Artificial intelligence, Deep learning, FDG PET/CT, Oncology,
- MeSH
- Whole Body Imaging * methods MeSH
- Deep Learning * MeSH
- Child MeSH
- Adult MeSH
- Fluorodeoxyglucose F18 * MeSH
- Cohort Studies MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Neoplasms * diagnostic imaging MeSH
- Positron Emission Tomography Computed Tomography * methods MeSH
- Image Processing, Computer-Assisted * methods MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Validation Study MeSH
- Names of Substances
- Fluorodeoxyglucose F18 * MeSH
BACKGROUND: This study develops a deep learning-based automated lesion segmentation model for whole-body 3D18F-fluorodeoxyglucose (FDG)-Position emission tomography (PET) with computed tomography (CT) images agnostic to disease location and site. METHOD: A publicly available lesion-annotated dataset of 1014 whole-body FDG-PET/CT images was used to train, validate, and test (70:10:20) eight configurations with 3D U-Net as the backbone architecture. The best-performing model on the test set was further evaluated on 3 different unseen cohorts consisting of osteosarcoma or neuroblastoma (OS cohort) (n = 13), pediatric solid tumors (ST cohort) (n = 14), and adult Pheochromocytoma/Paraganglioma (PHEO cohort) (n = 40). Both lesion-level and patient-level statistical analyses were conducted to validate the performance of the model on different cohorts. RESULTS: The best performing 3D full resolution nnUNet model achieved a lesion-level sensitivity and DISC of 71.70 % and 0.40 for the test set, 97.83 % and 0.73 for ST, 40.15 % and 0.36 for OS, and 78.37 % and 0.50 for the PHEO cohort. For the test set and PHEO cohort, the model has missed small volume and lower uptake lesions (p < 0.01), whereas no statistically significant differences (p > 0.05) were found in the false positive (FP) and false negative lesions volume and uptake for the OS and ST cohort. The predicted total lesion glycolysis is slightly higher than the ground truth because of FP calls, which experts can easily check and reject. CONCLUSION: The developed deep learning-based automated lesion segmentation AI model which utilizes 3D_FullRes configuration of the nnUNet framework showed promising and reliable performance for the whole-body FDG-PET/CT images.
See more in PubMed
Blanc-Durand P, Jegou S, Kanoun S, Berriolo-Riedinger A, Bodet-Milin C, Kraeber-Bodere F, Carlier T, Le Gouill S, Casasnovas RO, Meignan M, & Itti E (2021). Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network. Eur J Nucl Med Mol Imaging, 48(5), 1362–1370. 10.1007/s00259-020-05080-7 PubMed DOI
Cardoso MJ, Li W, Brown R, Ma N, Kerfoot E, Wang Y, Murrey B, Myronenko A, Zhao C, Yang D, Nath V, He Y, Xu Z, Hatamizadeh A, Myronenko A, Zhu W, Liu Y, Zheng M, Tang Y, … Feng A (2022). MONAI: An open-source framework for deep learning in healthcare. arXiv preprint, arXiv:2211.02701. 10.48550/arXiv.2211.02701 DOI
Chen L-C, Papandreou G, Kokkinos I, Murphy K, & Yuille AL (2018). DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 40(4), 15. PubMed
Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, & Prior F (2013). The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging, 26(6), 1045–1057. 10.1007/s10278-013-9622-7 PubMed DOI PMC
Constantino CS, Leocadio S, Oliveira FPM, Silva M, Oliveira C, Castanheira JC, Silva A, Vaz S, Teixeira R, Neves M, Lucio P, Joao C, & Costa DC (2023). Evaluation of Semiautomatic and Deep Learning-Based Fully Automatic Segmentation Methods on [(18)F]FDG PET/CT Images from Patients with Lymphoma: Influence on Tumor Characterization. J Digit Imaging, 36(4), 1864–1876. 10.1007/s10278-023-00823-y PubMed DOI PMC
Dice LR (1945). Measures of the Amount of Ecologic Association Between Species. Ecology, 26(3), 297–302. 10.2307/1932409 DOI
Fallahpoor M, Chakraborty S, Pradhan B, Faust O, Barua PD, Chegeni H, & Acharya R (2024). Deep learning techniques in PET/CT imaging: A comprehensive review from sinogram to image space. Comput Methods Programs Biomed, 243, 107880. 10.1016/j.cmpb.2023.107880 PubMed DOI
Ferrandez MC, Golla SSV, Eertink JJ, de Vries BM, Lugtenburg PJ, Wiegers SE, Zwezerijnen GJC, Pieplenbosch S, Kurch L, Huttmann A, Hanoun C, Duhrsen U, de Vet HCW, Petra, Zijlstra JM, & Boellaard R (2023). An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients. Sci Rep, 13(1), 13111. 10.1038/s41598-023-40218-1 PubMed DOI PMC
Fruh M, Fischer M, Schilling A, Gatidis S, & Hepp T (2021). Weakly supervised segmentation of tumor lesions in PET-CT hybrid imaging. J Med Imaging (Bellingham), 8(5), 054003. 10.1117/1.JMI.8.5.054003 PubMed DOI PMC
Gatidis S, Früh M, Fabritius M, Gu S, Nikolaou K, Fougère CL, Ye J, He J, Peng Y, Bi L, Ma J, Wang B, Zhang J, Huang Y, Heiliger L, Marinov Z, Stiefelhagen R, Egger J, Kleesiek J, … Küstner T (2023). The autoPET challenge: Towards fully automated lesion segmentation in oncologic PET/CT imaging.
Gatidis S, Hepp T, Fruh M, La Fougere C, Nikolaou K, Pfannenberg C, Scholkopf B, Kustner T, Cyran C, & Rubin D (2022). A whole-body FDG-PET/CT Dataset with manually annotated Tumor Lesions. Sci Data, 9(1), 601. 10.1038/s41597-022-01718-3 PubMed DOI PMC
Gatidis S, & Küstner T (2022). A whole-body FDG-PET/CT dataset with manually annotated tumor lesions (FDG-PET-CT-Lesions). 10.7937/gkr0-xv29 PubMed DOI PMC
Giavarina D (2015). Understanding Bland Altman analysis. Biochemia Medica, 25(2), 10. 10.11613/BM.2015.015 PubMed DOI PMC
Hadlich M, Marinov Z, & Stiefelhagen R (2023). AutoPET Challenge 2023: Sliding Window-based Optimization of U-Net. arXiv preprint, 2. 10.48550/arXiv.2309.12114 DOI
Hassan FU, & Cook GJ (2012). PET/CT in oncology. Clinical Medicine, 12(4), 368–372. 10.7861/clinmedicine.12-4-368 PubMed DOI PMC
Hatamizadeh A, Nath V, Tang Y, Yang D, Roth H, & Xu D (2022). Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images. arXiv preprint. 10.48550/arXiv.2201.01266 DOI
Im HJ, Bradshaw T, Solaiyappan M, & Cho SY (2018). Current Methods to Define Metabolic Tumor Volume in Positron Emission Tomography: Which One is Better? Nucl Med Mol Imaging, 52(1), 5–15. 10.1007/s13139-017-0493-6 PubMed DOI PMC
Isensee F, Jaeger PF, Kohl SAA, Petersen J, & Maier-Hein KH (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods, 18(2), 203–211. 10.1038/s41592-020-01008-z PubMed DOI
Jemaa S, Fredrickson J, Carano RAD, Nielsen T, de Crespigny A, & Bengtsson T (2020). Tumor Segmentation and Feature Extraction from Whole-Body FDG-PET/CT Using Cascaded 2D and 3D Convolutional Neural Networks. J Digit Imaging, 33(4), 888–894. 10.1007/s10278-020-00341-1 PubMed DOI PMC
Jiang Y, He X, Lee M-LT, Rosner B, & Yan J (2020). Wilcoxon Rank-Based Tests for Clustered Data with R Package clusrank. JournalofStatisticalSoftware, 96(6). 10.18637/jss.v096.i06 DOI
Kaczanowska S, Murty T, Alimadadi A, Contreras CF, Duault C, Subrahmanyam PB, Reynolds W, Gutierrez NA, Baskar R, Wu CJ, Michor F, Altreuter J, Liu Y, Jhaveri A, Duong V, Anbunathan H, Ong C, Zhang H, Moravec R, … Kaplan RN (2024). Immune determinants of CAR-T cell expansion in solid tumor patients receiving GD2 CAR-T cell therapy. Cancer Cell, 42(1), 35–51 e38. 10.1016/j.ccell.2023.11.011 PubMed DOI PMC
Karimdjee M, Delaby G, Huglo D, Baillet C, Willaume A, Dujardin S, & Bailliez A (2023). Evaluation of a convolution neural network for baseline total tumor metabolic volume on [18F]FDG PET in diffuse large B cell lymphoma. European Radiology, 33, 2286–3395. 10.1007/s00330-022-09375-1 PubMed DOI
Koo TK, & Li MY (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine, 15(2), 9. 10.1016/j.jcm.2016.02.012 PubMed DOI PMC
Landis JR, & Koch GG (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 16. 10.2307/2529310 PubMed DOI
Lay N (2023). RandomSplit. https://github.com/nslay/RandomSplit
Leung KH, Rowe SP, Sadaghiani MS, Leal JP, Mena E, Choyke PL, Du Y, & Pomper MG (2024). Deep Semisupervised Transfer Learning for Fully Automated Whole-Body Tumor Quantification and Prognosis of Cancer on PET/CT. J Nucl Med. 10.2967/jnumed.123.267048 PubMed DOI PMC
Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, & Guo B (2021). Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. arXiv preprint. 10.48550/arXiv.2103.14030 DOI
Peng Y, Kim J, Feng D, & Bi L (2022). Automatic Tumor Segmentation via False Positive Reduction Network for Whole-Body Multi-Modality PET/CT Images. arXiv preprint. 10.48550/arXiv.2209.07705 DOI
Phil T, Albrecht T, Gay S, & Rasmussen ME (2023). Sikerdebaard/dcmrtstruct2nii: dcmrtstruct2nii v5 (Version v5). In Zenodo.
Ronneberger O, Fischer P, & Brox T (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention, Pt Iii, 9351, 234–241. 10.1007/978-3-319-24574-4_28 DOI
Sadaghiani MS, Rowe SP, & Sheikhbahaei S (2021). Applications of artificial intelligence in oncologic 18F-FDG PET/CT imaging: a systematic review. Annals of Translational Medicine, 9(9). PubMed PMC
Satoh Y, Nambu A, Ichikawa T, & Onishi H (2014). Whole-body total lesion glycolysis measured on fluorodeoxyglucose positron emission tomography/computed tomography as a prognostic variable in metastatic breast cancer. BMC Cancer, 14(525). 10.1186/1471-2407-14-525 PubMed DOI PMC
Shiri I, Amini M, Yousefirizi F, Sadr AV, Hajianfar G, Salimi Y, Mansouri Z, Jenabi E, Maghsudi M, Mainta I, Becker M, Rahmim A, & Zaidi H (2024). Information fusion for fully automated segmentation of head and neck tumors from PET and CT images. Medical Physics, 51, 319–333. 10.1002/mp.16615 PubMed DOI
Sibille L, Seifert R, Avramovic N, Vehren T, Spottiswoode B, Zuehlsdorff S, & Schäfers M (2020). 18F-FDG PET/CT Uptake Classification in Lymphoma and Lung Cancer by Using Deep Convolutional Neural Networks. Radiology, 294(2), 445–452. 10.1148/radiol.2019191114 PubMed DOI
Sibille L, Zhan X, & Xiang L (2022). Whole-body tumor segmentation of 18F-FDG PET/CT using cascaded and ensembled convolutional neural networks. arXiv preprint. 10.48550/arXiv.2210.08068 DOI
Silversmith W (2021). cc3d: Connected components on multilabel 3D & 2D images. (3.2.1).
Sørensen T (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons (Publication Number 4) https://www.royalacademy.dk/Publications/High/295_S%C3%B8rensen,%20Thorvald.pdf
Tarai S, Lundstrom E, Sjoholm T, Jonsson H, Korenyushkin A, Ahmad N, Pedersen MA, Molin D, Enblad G, Strand R, Ahlstrom H, & Kullberg J (2024). Improved automated tumor segmentation in whole-body 3D scans using multi-directional 2D projection-based priors. Heliyon, 10(4), e26414. 10.1016/j.heliyon.2024.e26414 PubMed DOI PMC
Wang H, Zhang N, Huo L, & Zhang B (2019). Dual-modality multi-atlas segmentation of torso organs from [(18)F]FDG-PET/CT images. Int J Comput Assist Radiol Surg, 14(3), 473–482. 10.1007/s11548-018-1879-3 PubMed DOI
Wang X, Jemaa S, Fredrickson J, Coimbra AF, Nielsen T, De Crespigny A, Bengtsson T, & Carano RAD (2022). Heart and bladder detection and segmentation on FDG PET/CT by deep learning. BMC Med Imaging, 22(1), 58. 10.1186/s12880-022-00785-7 PubMed DOI PMC
Wasserthal J, Breit H-C, Meyer MT, Pradella M, Hinck D, Sauter AW, Heye T, Boll DT, Cyriac J, Yang S, Bach M, & Segeroth M (2023). TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images. Radiology: Artificial Intelligence, 5(5). 10.1148/ryai.230024 PubMed DOI PMC
Weber WA (2010). Quantitative analysis of PET studies. Radiother Oncol, 96(3), 308–310. 10.1016/j.radonc.2010.07.004 PubMed DOI
Yang E, Kim JH, Min JH, Jeong WK, Hwang JA, Lee JH, Shin J, Kim H, Lee SE, & Baek SY (2024). nnU-Net-Based Pancreas Segmentation and Volume Measurement on CT Imaging in Patients with Pancreatic Cancer. Acad Radiol. 10.1016/j.acra.2024.01.004 PubMed DOI
Ye J, Wang H, Huang Z, Deng Z, Su Y, Tu C, Wu Q, Yang Y, Wei M, Niu J, & He J (2022). Exploring Vanilla U-Net for Lesion Segmentation from Whole-body FDG-PET/CT Scans. arXiv preprint. 10.48550/arXiv.2210.07490 DOI
Yousefirizi F, Klyuzhin IS, O JH, Harsini S, Tie X, Shiri I, Shin M, Lee C, Cho SY, Bradshaw TJ, Zaidi H, Benard F, Sehn LH, Savage KJ, Steidl C, Uribe CF, & Rahmim A (2024). TMTV-Net: fully automated total metabolic tumor volume segmentation in lymphoma PET/CT images - a multi-center generalizability analysis. Eur J Nucl Med Mol Imaging, 51(7), 1937–1954. 10.1007/s00259-024-06616-x PubMed DOI
Zhang G, Bao C, Liu Y, Wang Z, Du L, Zhang Y, Wang F, Xu B, Zhou SK, & Liu R (2023). (18)F-FDG-PET/CT-based deep learning model for fully automated prediction of pathological grading for pancreatic ductal adenocarcinoma before surgery. EJNMMI Res, 13(1), 49. 10.1186/s13550-023-00985-4 PubMed DOI PMC