AIMS: Theranostics utilizes the nuclear properties of radioactive isotopes, especially for molecular imaging and targeted therapy. Radiopharmaceuticals (RPs), which combine a pharmaceutical ligand with a radionuclide, enable accurate diagnosis and treatment of various diseases through modalities such as PET and SPECT imaging. The aim of this papare is to review adverse reactions associated with diagnostic and therapeutic radiopharmaceuticals, with an emphasis on their severity and clinical management. MATERIALS AND METHODS: This review evaluates documented adverse effects (AEs) related to RPs used in nuclear medicine imaging (PET and SPECT) and radionuclide therapy, focusing on their severity and clinical management strategies. It also considers the mechanisms of RPs toxicity, distinguishes between general and specific AEs, and highlights the limitations in current adverse drug reaction (ADR) assessment tools. The methodology used was the research and synthesis of most relevant published literature data; most relevant papers were synthesized regarding the reporting system of ARs and categorized by the specific and systemic adverse effects of RPs. RESULTS: Side effects from diagnostic RPs are relatively rare and typically minimal. Therapeutic RPs, selected for their high-energy radiation properties, can cause DNA damage to malignant cells while minimizing harm to healthy tissues. Although adverse effects do occur, they are generally fewer and less severe compared to conventional therapies. Severe toxicity is rare and often preventable. Both patient- and provider-reported ADRs offer important safety insights, though validated assessment instruments remain limited. CONCLUSION: Radionuclide therapy offers a targeted approach that is a less invasive alternative to conventional treatments with a favorable safety profile. Continued evaluation of adverse reactions and the development of standardized ADR assessment tools are essential for improving patient outcomes and RP safety monitoring.
- MeSH
- lidé MeSH
- nádory * radioterapie diagnostické zobrazování MeSH
- nežádoucí účinky léčiv * etiologie MeSH
- radiofarmaka * škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: This study develops a deep learning-based automated lesion segmentation model for whole-body 3D18F-fluorodeoxyglucose (FDG)-Position emission tomography (PET) with computed tomography (CT) images agnostic to disease location and site. METHOD: A publicly available lesion-annotated dataset of 1014 whole-body FDG-PET/CT images was used to train, validate, and test (70:10:20) eight configurations with 3D U-Net as the backbone architecture. The best-performing model on the test set was further evaluated on 3 different unseen cohorts consisting of osteosarcoma or neuroblastoma (OS cohort) (n = 13), pediatric solid tumors (ST cohort) (n = 14), and adult Pheochromocytoma/Paraganglioma (PHEO cohort) (n = 40). Both lesion-level and patient-level statistical analyses were conducted to validate the performance of the model on different cohorts. RESULTS: The best performing 3D full resolution nnUNet model achieved a lesion-level sensitivity and DISC of 71.70 % and 0.40 for the test set, 97.83 % and 0.73 for ST, 40.15 % and 0.36 for OS, and 78.37 % and 0.50 for the PHEO cohort. For the test set and PHEO cohort, the model has missed small volume and lower uptake lesions (p < 0.01), whereas no statistically significant differences (p > 0.05) were found in the false positive (FP) and false negative lesions volume and uptake for the OS and ST cohort. The predicted total lesion glycolysis is slightly higher than the ground truth because of FP calls, which experts can easily check and reject. CONCLUSION: The developed deep learning-based automated lesion segmentation AI model which utilizes 3D_FullRes configuration of the nnUNet framework showed promising and reliable performance for the whole-body FDG-PET/CT images.
- MeSH
- celotělové zobrazování * metody MeSH
- deep learning * MeSH
- dítě MeSH
- dospělí MeSH
- fluorodeoxyglukosa F18 * MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- nádory * diagnostické zobrazování MeSH
- PET/CT * metody MeSH
- počítačové zpracování obrazu * metody MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- validační studie MeSH
Brachyterapie s vysokým dávkovým příkonem (high dose rate brachytherapy, HDR BRT) je dnes prováděna výhradně automatickými afterloadingovými ozařovači. Nejčastějšími jsou aplikace intrakavitární a intersticiální, případně jejich kombinace. Důležitým aspektem plánování intersticiální brachyterapie je spolupráce lékaře s fyzikem již ve fázi zavádění aplikátorů. Úprava geometrie zavedených aplikátorů v pozdější fázi již často není realizovatelná. Pro výpočet ozařovacích plánů brachyterapie lze využít řadu zobrazovacích modalit. V článku jsou shrnuty fyzikální parametry hodnocení kvality ozařovacích plánů a cíle jejich optimalizace.
High dose rate brachytherapy is realized solely by automatic afterloading irradiators nowadays. The most common are intracavitary and interstitial applications. Cooperation between a physician and a physicist before insertion of applicators is a very important aspect. Changes of applicators' geometry are usually not possible afterwards. A range of imaging modalities can be used for brachytherapy planning. A physical parameters useful for quality assessment and optimization of the plans are presented in this article.
- Klíčová slova
- afterloading,
- MeSH
- brachyterapie * metody přístrojové vybavení MeSH
- celková dávka radioterapie MeSH
- fyzikální jevy * MeSH
- lidé MeSH
- nádory diagnostické zobrazování radioterapie MeSH
- plánování radioterapie pomocí počítače metody přístrojové vybavení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
During hypoxia, tissues are subjected to an inadequate oxygen supply, disrupting the balance needed to maintain normal function. This deficiency can occur due to reduced oxygen delivery caused by impaired blood flow or a decline in the blood's ability to carry oxygen. In tumors, hypoxia and vascularization play crucial roles, shaping their microenvironments and influencing cancer progression, response to treatment and metastatic potential. This chapter provides guidance on the use of non-invasive imaging methods including Positron Emission Tomography and Magnetic Resonance Imaging to study tumor oxygenation in pre-clinical settings. These imaging techniques offer valuable insights into tumor vascularity and oxygen levels, aiding in understanding tumor behavior and treatment effects. For example, PET imaging uses tracers such as [18F]-fluoromisonidazole (FMISO) to visualize hypoxic areas within tumors, while MRI complements this with anatomical and functional images. Although directly assessing tumor hypoxia with MRI remains challenging, techniques like Blood Oxygen Level Dependent (BOLD) and Dynamic Contrast-Enhanced MRI (DCE-MRI) provide valuable information. BOLD can track changes in oxygen levels during oxygen challenges, while DCE-MRI offers real-time access to perfusion and vessel permeability data. Integrating data from these imaging modalities can help assess oxygen supply, refine treatment strategies, enhance therapeutic effectiveness, and ultimately improve patient outcomes.
- MeSH
- hypoxie diagnostické zobrazování MeSH
- kyslík metabolismus MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- misonidazol analogy a deriváty MeSH
- myši MeSH
- nádorová hypoxie MeSH
- nádory diagnostické zobrazování krevní zásobení patologie MeSH
- patologická angiogeneze diagnostické zobrazování patologie MeSH
- pozitronová emisní tomografie * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Photon-upconversion nanoparticles (UCNP) have already been established as labels for affinity assays in analog and digital formats. Here, advanced, or smart, systems based on UCNPs coated with active shells, fluorescent dyes, and metal and semiconductor nanoparticles participating in energy transfer reactions are reviewed. In addition, switching elements can be embedded in such assemblies and provide temporal and spatial control of action, which is important for intracellular imaging and monitoring activities. Demonstration and critical comments on representative approaches demonstrating the progress in the use of such UCNPs in bioanalytical assays, imaging, and monitoring of target molecules in cells are reported, including particular examples in the field of cancer theranostics.
- Klíčová slova
- N-NOSE,
- MeSH
- falešně negativní reakce * MeSH
- falešně pozitivní reakce MeSH
- hlístice mikrobiologie MeSH
- lidé MeSH
- nádory diagnostické zobrazování prevence a kontrola MeSH
- podvádění MeSH
- sdělení pravdy etika MeSH
- senzitivita a specificita * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
V následujícím přehledovém článku vás provedeme současnými výhledy na radionuklidovou terapii a nahlédneme k novým výzvám týkajícím se hodnocení léčebné odpovědi, teranostiky a plánování radioterapie. Zastavíme se na již dlouho známé problematice artefaktů a nových způsobech řešení. Poté se dostaneme k nástrojům nukleární medicíny popisujícími celulární a subcelulární biologické vlastnosti, což nám umožňuje detekci heterogenity nádoru a identifikaci metabolického vykolejení typického pro dediferenciaci nádoru. Nevynecháme ani nový pohled na „klasickou” scintigrafii skeletu, např. SPECT v časné fázi scintigrafie skeletu je předmětem rostoucího zájmu a v poslední době se toto téma stalo zdrojem několika publikací. Na závěr v tomto článku podáváme přehled o nedávném vývoji kvantifikace v nukleární medicíně a diskutujeme o současném stavu techniky v této oblasti. Již byly zveřejněny praktické pokyny EANM, které lékařům, vědcům a výzkumníkům pomohou provádět vysoce kvalitní kvantitativní hodnocení distribuce radiofarmak.
We will review nowadays trends in radionuclide therapy and new challenges in therapy respond assessment, theragnostics and radiotherapy planning. We will also mention a long-lasting problem of artefacts and new ways how to resolve them. Nuclear medicine tools describing cellular and subcellular biological properties make it possible to detect tumor heterogeneity and identification of metabolic disarray typical for dedifferentiation. There is also a new insight into classical bone scintigraphy, e.g., early SPECT is a matter of interest and there are several new publications about this topic. Last but not least is a new progress in quantification, we will also discuss current techniques in this area. EANM practical guidelines were published yet which can help physicians and scientists to perform a high-quality quantitative evaluation of radiopharmaceutical distribution.