International Survey on Phenylketonuria Newborn Screening
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P3-0343
The Slovenian Research and Innovation Agency
PubMed
40136633
PubMed Central
PMC11943362
DOI
10.3390/ijns11010018
PII: ijns11010018
Knihovny.cz E-zdroje
- Klíčová slova
- cut-off, international, laboratory, methods, neonatal, newborn, phenylketonuria, screening, survey,
- Publikační typ
- časopisecké články MeSH
Newborn screening for Phenylketonuria enables early detection and timely treatment with a phenylalanine-restricted diet to prevent severe neurological impairment. Although effective and in use for 60 years, screening, diagnostic, and treatment practices still vary widely across countries and centers. To evaluate the Phenylketonuria newborn screening practices internationally, we designed a survey with questions focusing on the laboratory aspect of the screening system. We analyzed 24 completed surveys from 23 countries. Most participants used the same sampling age range of 48-72 h; they used tandem mass spectrometry and commercial non-derivatized kits to measure phenylalanine (Phe), and had non-negative cut-off values (COV) set mostly at 120 µmol/L of Phe. Participants mostly used genetic analysis of blood and detailed amino acid analysis from blood plasma as their confirmatory methods and set the COV for the initiation of dietary therapy at 360 µmol/L of Phe. There were striking differences in practice as well. While most participants reported a 48-72 h range for age at sampling, that range was overall quite diverse Screening COV varied as well. Additional screening parameters, e.g., the phenylalanine/tyrosine ratio were used by some participants to determine the screening result. Some participants included testing for tetrahydrobiopterin deficiency, or galactosemia in their diagnostic process. Results together showed that there is room to select a best practice from the many practices applied. Such a best practice of PKU-NBS parameters and post-screening parameters could then serve as a generally applicable guideline.
Center for Inherited Metabolic Diseases Karolinska University Hospital SE 171 76 Stockholm Sweden
Department of Molecular Medicine and Surgery Karolinska Institutet SE 171 76 Stockholm Sweden
Faculty of Medicine University of Ljubljana Vrazov trg 2 1000 Ljubljana Slovenia
International Society for Neonatal Screening Reigerskamp 273 3607 HP Stichtse Vecht The Netherlands
Regional Coordinator Centre for Rare Diseases University Hospital of Udine 33100 Udine Italy
Zobrazit více v PubMed
Blau N., van Spronsen F.J., Levy H.L. Phenylketonuria. Lancet Lond. Engl. 2010;376:1417–1427. doi: 10.1016/S0140-6736(10)60961-0. PubMed DOI
van Spronsen F.J., Blau N., Harding C., Burlina A., Longo N., Bosch A.M. Phenylketonuria. Nat. Rev. Dis. Primer. 2021;7:36. doi: 10.1038/s41572-021-00267-0. PubMed DOI PMC
Fölling A. Über Ausscheidung von Phenylbrenztraubensäure in Den Harn Als Stoffwechselanomalie in Verbindung Mit Imbezillität. Hoppe-Seyler’s Z. Für Physiol. Chem. 1934;227:169–181. doi: 10.1515/bchm2.1934.227.1-4.169. DOI
van Wegberg A.M.J., MacDonald A., Ahring K., Bélanger-Quintana A., Blau N., Bosch A.M., Burlina A., Campistol J., Feillet F., Giżewska M., et al. The Complete European Guidelines on Phenylketonuria: Diagnosis and Treatment. Orphanet J. Rare Dis. 2017;12:162. doi: 10.1186/s13023-017-0685-2. PubMed DOI PMC
Perko D., Groselj U., Cuk V., Iztok Remec Z., Zerjav Tansek M., Drole Torkar A., Krhin B., Bicek A., Oblak A., Battelino T., et al. Comparison of Tandem Mass Spectrometry and the Fluorometric Method—Parallel Phenylalanine Measurement on a Large Fresh Sample Series and Implications for Newborn Screening for Phenylketonuria. Int. J. Mol. Sci. 2023;24:2487. doi: 10.3390/ijms24032487. PubMed DOI PMC
Asano Y. Screening and Development of Enzymes for Determination and Transformation of Amino Acids. Biosci. Biotechnol. Biochem. 2019;83:1402–1416. doi: 10.1080/09168451.2018.1559027. PubMed DOI
Blau N., Bélanger-Quintana A., Demirkol M., Feillet F., Giovannini M., MacDonald A., Trefz F.K., van Spronsen F., European PKU centers Management of Phenylketonuria in Europe: Survey Results from 19 Countries. Mol. Genet. Metab. 2010;99:109–115. doi: 10.1016/j.ymgme.2009.09.005. PubMed DOI
van Spronsen F.J., van Wegberg A.M., Ahring K., Bélanger-Quintana A., Blau N., Bosch A.M., Burlina A., Campistol J., Feillet F., Giżewska M., et al. Key European Guidelines for the Diagnosis and Management of Patients with Phenylketonuria. Lancet Diabetes Endocrinol. 2017;5:743–756. doi: 10.1016/S2213-8587(16)30320-5. PubMed DOI
Ahring K., Bélanger-Quintana A., Burlina A., Giżewska M., Maillot F., Muntau A., Roscher A., MacDonald A. Management of Phenylketonuria in European PKU Centres Remains Heterogeneous. Mol. Genet. Metab. 2024;141:108120. doi: 10.1016/j.ymgme.2023.108120. PubMed DOI
Zerjav Tansek M., Groselj U., Angelkova N., Anton D., Baric I., Djordjevic M., Grimci L., Ivanova M., Kadam A., Kotori V., et al. Phenylketonuria Screening and Management in Southeastern Europe—Survey Results from 11 Countries. Orphanet J. Rare Dis. 2015;10:68. doi: 10.1186/s13023-015-0283-0. PubMed DOI PMC
Sikonja J., Groselj U., Scarpa M., la Marca G., Cheillan D., Kölker S., Zetterström R.H., Kožich V., Le Cam Y., Gumus G., et al. Towards Achieving Equity and Innovation in Newborn Screening across Europe. Int. J. Neonatal Screen. 2022;8:31. doi: 10.3390/ijns8020031. PubMed DOI PMC
Koracin V., Mlinaric M., Baric I., Brincat I., Djordjevic M., Torkar A.D., Fumic K., Kocova M., Milenkovic T., Moldovanu F., et al. Current Status of Newborn Screening in Southeastern Europe. Front. Pediatr. 2021;9:648939. doi: 10.3389/fped.2021.648939. PubMed DOI PMC
RStudio Team . RStudio: Integrated Development Environment for R. RStudio Team; Boston, MA, USA: 2020.
R Core Team . R: A Language and Environment for Statistical Computing. R Core Team; Vienna, Austria: 2023.
Wickham H., Vaughan D., Girlich M. Tidyr: Tidy Messy Data. Posit; Boston, MA, USA: 2024.
Wickham H. Ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY, USA: 2016.
Wickham H. Reshaping Data with the reshape Package. J. Stat. Softw. 2007;21:1–20. doi: 10.18637/jss.v021.i12. DOI
Auguie B. gridExtra: Miscellaneous Functions for “Grid” Graphics. 2017. [(accessed on 18 November 2024)]. Available online: https://rdrr.io/cran/gridExtra/
Wickham H., François R., Henry L., Müller K., Vaughan D. Dplyr: A Grammar of Data Manipulation. Posit; Boston, MA, USA: 2023.
Haas D., Hauke J., Schwarz K.V., Consalvi L., Trefz F.K., Blau N., Hoffmann G.F., Burgard P., Garbade S.F., Okun J.G. Differences of Phenylalanine Concentrations in Dried Blood Spots and in Plasma: Erythrocytes as a Neglected Component for This Observation. Metabolites. 2021;11:680. doi: 10.3390/metabo11100680. PubMed DOI PMC
Eastman J.W., Sherwin J.E., Wong R., Liao C.L., Currier R.J., Lorey F., Cunningham G. Use of the Phenylalanine: Tyrosine Ratio to Test Newborns for Phenylketonuria in a Large Public Health Screening Programme. J. Med. Screen. 2000;7:131–135. doi: 10.1136/jms.7.3.131. PubMed DOI
Blau N., Shen N., Carducci C. Molecular Genetics and Diagnosis of Phenylketonuria: State of the Art. Expert Rev. Mol. Diagn. 2014;14:655–671. doi: 10.1586/14737159.2014.923760. PubMed DOI
Levy P.A., Miller J.B., Shapira E. The Advantage of Phenylalanine to Tyrosine Ratio for the Early Detection of Phenylketonuria. Clin. Chim. Acta. 1998;270:177–181. doi: 10.1016/S0009-8981(97)00191-5. PubMed DOI
Loeber J.G., Platis D., Zetterström R.H., Almashanu S., Boemer F., Bonham J.R., Borde P., Brincat I., Cheillan D., Dekkers E., et al. Neonatal Screening in Europe Revisited: An ISNS Perspective on the Current State and Developments Since 2010. Int. J. Neonatal Screen. 2021;7:15. doi: 10.3390/ijns7010015. PubMed DOI PMC
Lampret B.R., Remec Ž.I., Torkar A.D., Tanšek M.Ž., Šmon A., Koračin V., Čuk V., Perko D., Ulaga B., Jelovšek A.M., et al. Expanded Newborn Screening Program in Slovenia Using Tandem Mass Spectrometry and Confirmatory Next Generation Sequencing Genetic Testing. Zdr. Varst. 2020;59:256–263. doi: 10.2478/sjph-2020-0032. PubMed DOI PMC
Chace D.H., Millington D.S., Terada N., Kahler S.G., Roe C.R., Hofman L.F. Rapid Diagnosis of Phenylketonuria by Quantitative Analysis for Phenylalanine and Tyrosine in Neonatal Blood Spots by Tandem Mass Spectrometry. Clin. Chem. 1993;39:66–71. doi: 10.1093/clinchem/39.1.66. PubMed DOI
Vittozzi L., Hoffmann G.F., Cornel M., Loeber G. Evaluation of Population Newborn Screening Practices for Rare Disorders in Member States of the European Union. Orphanet J. Rare Dis. 2010;5:P26. doi: 10.1186/1750-1172-5-S1-P26. DOI
Groselj U., Murko S., Zerjav Tansek M., Kovac J., Trampus Bakija A., Repic Lampret B., Battelino T. Comparison of Tandem Mass Spectrometry and Amino Acid Analyzer for Phenylalanine and Tyrosine Monitoring—Implications for Clinical Management of Patients with Hyperphenylalaninemia. Clin. Biochem. 2015;48:14–18. doi: 10.1016/j.clinbiochem.2014.09.014. PubMed DOI
Lipstein E.A., Perrin J.M., Waisbren S.E., Prosser L.A. Impact of False-Positive Newborn Metabolic Screening Results on Early Health Care Utilization. Genet. Med. 2009;11:716–721. doi: 10.1097/GIM.0b013e3181b3a61e. PubMed DOI PMC
Perko D., Lampret B.R., Remec Z.I., Tansek M.Z., Torkar A.D., Krhin B., Bicek A., Oblak A., Battelino T., Groselj U. Optimizing the Phenylalanine Cut-Off Value in a Newborn Screening Program. Genes. 2022;13:517. doi: 10.3390/genes13030517. PubMed DOI PMC
Schulze A., Kohlmueller D., Mayatepek E. Sensitivity of Electrospray-Tandem Mass Spectrometry Using the Phenylalanine/Tyrosine-Ratio for Differential Diagnosis of Hyperphenylalaninemia in Neonates. Clin. Chim. Acta. 1999;283:15–20. doi: 10.1016/S0009-8981(99)00016-9. PubMed DOI
Ceglarek U., Müller P., Stach B., Bührdel P., Thiery J., Kiess W. Validation of the Phenylalanine/Tyrosine Ratio Determined by Tandem Mass Spectrometry: Sensitive Newborn Screening for Phenylketonuria. Clin. Chem. Lab. Med. 2002;40:693–697. doi: 10.1515/CCLM.2002.119. PubMed DOI
Blau N., Hennermann J.B., Langenbeck U., Lichter-Konecki U. Diagnosis, Classification, and Genetics of Phenylketonuria and Tetrahydrobiopterin (BH4) Deficiencies. Mol. Genet. Metab. 2011;104((Suppl. S2)):9. doi: 10.1016/j.ymgme.2011.08.017. PubMed DOI
Gallego D., Leal F., Gámez A., Castro M., Navarrete R., Sanchez-Lijarcio O., Vitoria I., Bueno-Delgado M., Belanger-Quintana A., Morais A., et al. Pathogenic Variants of DNAJC12 and Evaluation of the Encoded Cochaperone as a Genetic Modifier of Hyperphenylalaninemia. Hum. Mutat. 2020;41:1329–1338. doi: 10.1002/humu.24026. PubMed DOI
Groselj U., Tansek M.Z., Kovac J., Hovnik T., Podkrajsek K.T., Battelino T. Five Novel Mutations and Two Large Deletions in a Population Analysis of the Phenylalanine Hydroxylase Gene. Mol. Genet. Metab. 2012;106:142–148. doi: 10.1016/j.ymgme.2012.03.015. PubMed DOI
Kure S., Hou D.C., Ohura T., Iwamoto H., Suzuki S., Sugiyama N., Sakamoto O., Fujii K., Matsubara Y., Narisawa K. Tetrahydrobiopterin-Responsive Phenylalanine Hydroxylase Deficiency. J. Pediatr. 1999;135:375–378. doi: 10.1016/S0022-3476(99)70138-1. PubMed DOI
Badiu Tișa I., Achim A.C., Cozma-Petruț A. The Importance of Neonatal Screening for Galactosemia. Nutrients. 2022;15:10. doi: 10.3390/nu15010010. PubMed DOI PMC
Coelho A.I., Rubio-Gozalbo M.E., Vicente J.B., Rivera I. Sweet and Sour: An Update on Classic Galactosemia. J. Inherit. Metab. Dis. 2017;40:325–342. doi: 10.1007/s10545-017-0029-3. PubMed DOI PMC
Cantley N.W.P., Barski R., Kemp H., Hogg S.L., Wu H.Y.T., Bowron A., Collingwood C., Cundick J., Hart C., Shakespeare L., et al. Incidental Detection of Classical Galactosemia through Newborn Screening for Phenylketonuria: A 10-Year Retrospective Audit to Determine the Efficacy of This Approach. Int. J. Neonatal Screen. 2023;10:2. doi: 10.3390/ijns10010002. PubMed DOI PMC
Vockley J., Andersson H.C., Antshel K.M., Braverman N.E., Burton B.K., Frazier D.M., Mitchell J., Smith W.E., Thompson B.H., Berry S.A., et al. Phenylalanine Hydroxylase Deficiency: Diagnosis and Management Guideline. Genet. Med. Off. J. Am. Coll. Med. Genet. 2014;16:188–200. doi: 10.1038/gim.2013.157. PubMed DOI