Evaluation of various membranes for blood-feeding in nine sand fly species and artificial feeding challenges in Sergentomyia minuta
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
101057690
European Commission
101057690
European Commission
101057690
European Commission
101057690
European Commission
10038150
UK Research and Innovation
10038150
UK Research and Innovation
10038150
UK Research and Innovation
10038150
UK Research and Innovation
LX22NPO5103
European Union - Next Generation EU
LX22NPO5103
European Union - Next Generation EU
LX22NPO5103
European Union - Next Generation EU
LX22NPO5103
European Union - Next Generation EU
PubMed
40148995
PubMed Central
PMC11951564
DOI
10.1186/s13071-025-06729-8
PII: 10.1186/s13071-025-06729-8
Knihovny.cz E-zdroje
- Klíčová slova
- Leishmania, Lutzomyia, Phlebotomus, Sergentomyia minuta, Artificial feeding, Vector competence,
- MeSH
- hmyz - vektory fyziologie parazitologie MeSH
- kachny parazitologie MeSH
- krev * MeSH
- kur domácí parazitologie MeSH
- lidé MeSH
- prasata MeSH
- Psychodidae * fyziologie parazitologie MeSH
- stravovací zvyklosti * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: We evaluated various membranes for blood-feeding in nine sand fly species from different genera and subgenera. Most of these species are vectors of human-pathogenic Leishmania, whereas Sergentomyia minuta is a herpetophilic sand fly species and a proven vector of Leishmania (Sauroleishmania) tarentolae. METHODS: Female sand flies were offered blood through a range of membranes (chicken, reptilian, and frog skin; synthetic collagen; pig intestine; and duck foot webbing). Two feeding systems (glass feeder, Hemotek) and different blood sources (human, ovine, avian, and reptilian) were used. Feeding trials were conducted under varying thermal and light conditions to determine the optimal parameters. RESULTS: Among the 4950 female S. minuta tested, only a negligible fraction took a blood meal: 2% of the females fed on avian blood, and 0.2% of the females fed on human blood. In eight other species, the chicken membrane was generally more effective than synthetic membranes or pig intestines. For example, Phlebotomus duboscqi refused synthetic membranes, while Lutzomyia longipalpis and P. perniciosus avoided both synthetic membranes and pig intestines. The most effective membrane was duck foot webbing, with four species feeding more readily through it than through the chicken membrane. Additionally, applying coagulated blood plasma to the outer surface of chicken or synthetic membranes significantly increased feeding rates. CONCLUSIONS: Female S. minuta did not reliably feed on blood through the tested membranes, preventing laboratory infection experiments from confirming their vector competence for human-pathogenic Leishmania. However, for future experimental infections of other sand fly species, duck foot webbing has emerged as an effective membrane, and the application of blood plasma to the exterior of membranes may increase the feeding rates.
Zobrazit více v PubMed
Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27:123–47. PubMed
Ready PD. Biology of phlebotomine sand flies as vectors of disease agents. Annu Rev Entomol. 2013;58:227–50. PubMed
Bates PA. Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol. 2007;37:1097–106. PubMed PMC
Maia C, Depaquit J. Can Sergentomyia (Diptera, Psychodidae) play a role in the transmission of mammal-infecting Leishmania? Parasite. 2016;23:55. PubMed PMC
Klatt S, Simpson L, Maslov DA, Konthur Z. Leishmania tarentolae: Taxonomic classification and its application as a promising biotechnological expression host. PLoS Negl Trop Dis. 2019;13:1–29. PubMed PMC
Mendoza-Roldan JA, Latrofa MS, Tarallo VD, Manoj RRS, Bezerra-Santos MA, Annoscia G, et al. Leishmania spp. in Squamata reptiles from the Mediterranean basin. Transbound Emerg Dis. 2022;69:2856–66. PubMed
Ticha L, Volfova V, Mendoza-Roldan JA, Bezerra-Santos MA, Maia C, Sadlova J, et al. Experimental feeding of Sergentomyiaminuta on reptiles and mammals: comparison with Phlebotomuspapatasi. Parasite Vectors. 2023;16:1–9. PubMed PMC
Jaouadi K, Haouas N, Chaara D, Boudabous R, Gorcii M, Kidar A, et al. Phlebotomine (Diptera, Psychodidae) bloodmeal sources in Tunisian cutaneous leishmaniasis foci: Could Sergentomyia minuta, which is not an exclusive herpetophilic species, be implicated in the transmission of pathogens? Ann Entomol Soc Am. 2013;106:79–85.
Maia C, Parreira R, Cristóvão JM, Freitas FB, Afonso MO. Molecular detection of Leishmania DNA and identification of blood meals in wild caught phlebotomine sand flies (Diptera: Psychodidae) from southern Portugal. Parasite Vectors. 2015;8:173. PubMed PMC
Bennai K, Tahir D, Lafri I, Bendjaballah-Laliam A, Bitam I, Parola P. Molecular detection of Leishmania infantum DNA and host blood meal identification in Phlebotomus in a hypoendemic focus of human leishmaniasis in northern Algeria. PLoS Negl Trop Dis. 2018;12:1–13. PubMed PMC
González E, Molina R, Aldea I, Iriso A, Tello A, Jiménez M. Leishmania sp. detection and blood-feeding behaviour of Sergentomyia minuta collected in the human leishmaniasis focus of southwestern Madrid, Spain (2012–2017). Transbound Emerg Dis. 2020;67:1393–400. PubMed
Abbate JM, Maia C, Pereira A, Arfuso F, Gaglio G, Rizzo M, et al. Identification of trypanosomatids and blood feeding preferences of phlebotomine sand fly species common in Sicily. Southern Italy PLoS One. 2020;15:1–16. PubMed PMC
Pombi M, Giacomi A, Barlozzari G, Mendoza-Roldan J, Macrì G, Otranto D, et al. Molecular detection of Leishmania (Sauroleishmania) tarentolae in human blood and Leishmania (Leishmania) infantum in Sergentomyiaminuta: unexpected host-parasite contacts. Med Vet Entomol. 2020;34:470–5. PubMed
Pereira S, Pita-Pereira D, Araujo-Pereira T, Britto C, Costa-Rego T, Ferrolho J, et al. First molecular detection of Leishmania infantum in Sergentomyia minuta (Diptera, Psychodidae) in Alentejo, southern Portugal. Acta Trop. 2017;174:45–8. PubMed
Campino L, Cortes S, Dionísio L, Neto L, Afonso MO, Maia C. The first detection of Leishmania major in naturally infected Sergentomyia minuta in Portugal. Memrias do Instituto Oswaldo Cruz. 2013;108:516–8. PubMed PMC
Latrofa MS, Iatta R, Dantas-Torres F, Annoscia G, Gabrielli S, Pombi M, et al. Detection of Leishmania infantum DNA in phlebotomine sand flies from an area where canine leishmaniosis is endemic in southern Italy. Vet Parasitol. 2018;253:39–42. PubMed
Charrel RN, Izri A, Temmam S, De Lamballerie X, Parola P. Toscana virus RNA in Sergentomyiaminuta flies. Emerg Infect Dis. 2006;12:1299–300. PubMed PMC
Ayhan N, Prudhomme J, Laroche L, Bañuls AL, Charrel RN. Broader geographical distribution of Toscana virus in the Mediterranean region suggests the existence of larger varieties of sand fly vectors. Microorganisms. 2020;8:114. PubMed PMC
Killick-Kendrick R. The biology and control of Phlebotomine sand flies. Clin Dermatol. 1999;17:279–89. PubMed
Seblova V, Sadlova J, Carpenter S, Volf P. Speculations on biting midges and other bloodsucking arthropods as alternative vectors of Leishmania. Parasite Vectors. 2014;7:222. PubMed PMC
Lawyer P, Killick-Kendrick M, Rowland T, Rowton E, Volf P. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae). Parasite. 2017;24:42. PubMed PMC
Beach R, Young DG, Mutinga MJ. New Phlebotomine sand fly colonies: Rearing Phlebotomusmartini, Sergentomyiaschwetzi, and Sergentomyiaafricana (Diptera: Psychodidae). J Med Entomol. 1983;20:579–84. PubMed
Mutinga MJ, Kamau CC, Kaddu JB, Kyai FM, Omogo DM, Mwandandu J, et al. The biology and colonization of some Kenyan Phlebotomine sandfly species (Diptera: Psychodidae). Insect Sci Applic. 1989;10:677–83.
Kaddu JB, Mutinga MJ, Nyamori MP. Leishmania in Kenyan phlebotomine sandflies — IV Artificial feeding and attempts to infect six species of laboratory-reared sandflies with L. donovani. Insect Sci Applic. 1986;7:731–5.
Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011;36:1. PubMed
Lewis DJ. Phlebotomine sandflies (Diptera: Psychodidae) from the Oriental Region. Syst Entomol. 1987;12:163–80.
de Beer CJ, Boikanyo SNB, Venter GJ. Assessment of the Hemotek® system for the in vitro feeding of field-collected Culicoidesimicola (Diptera: Ceratopogonidae) in South Africa. Med Vet Entomol. 2021;35:177–86. PubMed
Ward RD, Lainson R, Shaw JJ. Some methods for membrane feeding of laboratory reared, neotropical sandflies (Diptera: Psychodidae). Ann Trop Med Parasitol. 1978;72:269–76. PubMed
Rowton ED, Dorsey KM, Armstrong KL. Comparison of in vitro (chicken-skin membrane) versus in vivo (live hamster) blood-feeding methods for maintenance of colonized Phlebotomuspapatasi (Diptera: Psychodidae). J Med Entomol. 2008;45:9–13. PubMed
Ready BPD. The feeding habits of laboratory-bred Lutzomyjalongipalpis (Diptera: Psychodidae). J Med Entomol. 1978;14:545–52. PubMed
Fatemi M, Saeidi Z, Noruzian P, Akhavan AA. Designing and introducing a new artificial feeding apparatus for sand fly rearing. J Arthropod Borne Dis. 2018;12:426–31. PubMed PMC
Nijhof AM, Tyson KR. In vitro feeding methods for hematophagous arthropods and their application in drug discovery. Ectoparasites Drug Discov Against Mov Targets. 2018;187–204. 10.1002/9783527802883.ch9.
Olajiga OM, Jameson SB, Carter BH, Wesson DM, Mitzel D, Londono-Renteria B. Artificial feeding systems for vector-borne disease studies. Biology (Basel). 2024;13:1–17. PubMed PMC
Seck F, Cailleau A, Diallo M, Dia I. Comparison of the efficiency and performance of two systems and three membranes for blood feeding mosquitoes. BMC Res Notes. 2021;14:1–4. PubMed PMC
Reza B. Artificial feeding apparatus for mosquito. Mosq News. 1967;27:87–9.
Novak MG, Berry W, Rowley WA. Comparison of four membranes for artificially bloodfeeding mosquitoes. J Am Mosq Control. 1991;7:327–9. PubMed
Rutledge LC, Ward RA, Gould DJ. Studies on the feeding response of mosquitoes to nutritive solutions in a new membrane feeder. Mosq News. 1964;24:407–19.
Sánchez Uzcátegui del YV, Santos dos EJM, Matos ER, Silveira FT, Vasconcelos dos Santos T, Póvoa MM. Artificial blood-feeding of phlebotomines (Diptera: Psychodidae: Phlebotominae): is it time to repurpose biological membranes in light of ethical concerns? Parasite Vectors. 2022;15:1–7. PubMed PMC
Mann RS, Kaufman PE. Colonization of Lutzomyia shannoni (Diptera: Psychodidae) utilizing an artificial blood feeding technique. J Vector Ecol. 2010;35:286–94. PubMed
Sadlova J, Homola M, Myskova J, Jancarova M, Volf P. Refractoriness of Sergentomyia schwetzi to Leishmania spp. is mediated by the peritrophic matrix. PLoS Negl Trop Dis. 2018;12:e0006382. PubMed PMC
Dohm JD, Rowton ED, Lawyer PG, O’Guinn M, Turell MJ. Laboratory transmission of Rift Valley fever virus by Phlebotomus duboscqi, Phlebotomus papatasi, Phlebotomus sergenti, and Sergentomyia schwetzi (Diptera: Psychodidae). J Med Entomol. 2000;37:435–8. PubMed
Lawyer PG, Ngumbi PM, Anjili CO, Odongo SO, Mebrahtu YB, Githure JI, et al. Development of Leishmania major in Phlebotomus duboscqi and Sergentomyia schwetzi (Diptera: Psychodidae. Am J Trop Med Hyg. 1990;43:31–43. PubMed
Pu L, Wang H, Zhao Y, Yuan Z, Zhang Y, Ding J, et al. Skin-like hydrogels: design strategy and mechanism, properties, and sensing applications. J Mater Chem C. 2023;11:8358.
Seblova V, Myskova J, Hlavacova J, Votypka J, Antoniou M, Volf P. Natural hybrid of Leishmania infantum/L. donovani: Development in Phlebotomus tobbi, P. perniciosus and Lutzomyia longipalpis and comparison with non-hybrid strains differing in tissue tropism. Parasite Vectors. 2015;8:605. PubMed PMC