Regulation of pyrimidine biosynthesis in the biocontrol bacterium Pseudomonas aureofaciens
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
T-0014
Welch Foundation
CHE-1263094
National Science Foundation
PubMed
40159589
DOI
10.1007/s12223-025-01259-3
PII: 10.1007/s12223-025-01259-3
Knihovny.cz E-resources
- Keywords
- Pseudomonas, Aspartate transcarbamoylase, Biosynthesis, Pyrimidines, Regulation,
- MeSH
- Aspartate Carbamoyltransferase metabolism MeSH
- Bacterial Proteins metabolism genetics MeSH
- Biosynthetic Pathways MeSH
- Dihydroorotate Dehydrogenase MeSH
- Glucose metabolism MeSH
- Succinic Acid metabolism MeSH
- Orotic Acid metabolism MeSH
- Orotate Phosphoribosyltransferase metabolism MeSH
- Orotidine-5'-Phosphate Decarboxylase metabolism genetics MeSH
- Oxidoreductases Acting on CH-CH Group Donors metabolism MeSH
- Pseudomonas * metabolism genetics enzymology MeSH
- Pyrimidines * biosynthesis MeSH
- Gene Expression Regulation, Bacterial * MeSH
- Uracil metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Aspartate Carbamoyltransferase MeSH
- Bacterial Proteins MeSH
- Dihydroorotate Dehydrogenase MeSH
- Glucose MeSH
- Succinic Acid MeSH
- Orotic Acid MeSH
- Orotate Phosphoribosyltransferase MeSH
- Orotidine-5'-Phosphate Decarboxylase MeSH
- Oxidoreductases Acting on CH-CH Group Donors MeSH
- pyrimidine MeSH Browser
- Pyrimidines * MeSH
- Uracil MeSH
The regulation of the pyrimidine biosynthetic pathway by pyrimidines was investigated in the biological control agent Pseudomonas aureofaciens ATCC 17418. Using succinate as a carbon source, orotic acid or uracil supplementation had a repressive effect in ATCC 17418 cells on dihydroorotate dehydrogenase or orotidine 5'- monophosphate decarboxylase activity but only orotic acid supplementation appeared to repress the level of orotate phosphoribosyltransferase activity. In glucose-grown ATCC 17418 cells, orotic acid supplementation appeared to repress the level of phosphoribosyltransferase or decarboxylase while uracil supplementation depressed the dihydroorotase, dehydrogenase, and decarboxylase activities. The pyrimidine auxotrophic mutant strain GW-2, isolated from ATCC 17418 using chemical mutagenesis and resistance to 5-fluoroorotic acid, was found to be deficient for orotidine 5'-monophosphate decarboxylase activity. Pyrimidine limitation of the succinate-grown mutant strain cells resulted in only a slight derepression of transcarbamoylase activity while pyrimidine limitation of glucose-grown mutant cells caused a derepression of the four active pyrimidine biosynthetic enzyme activities relative to their activities in the mutant cells grown with excess uracil. The control of the known regulatory enzyme aspartate transcarbamoylase was examined in P. aureofaciens ATCC 17418. Transcarbamoylase activity was shown to be inhibited by pyrophosphate, ATP, UTP, and ADP. It was concluded that the pyrimidine biosynthetic pathway in P. aureofaciens ATCC 17418 was subject to regulation at the transcriptional level and at the level of aspartate transcarbamoylase activity, which could be valuable in comprehending its nucleic acid metabolism as well as its taxonomic assignment to the Pseudomonas chlororaphis homology group.
See more in PubMed
Anzai Y, Kim H, Park J-Y, Wakabayashi H, Oyaizu H (2000) Phytogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589. https://doi.org/10.1099/00207713-50-4-1563 PubMed DOI
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye-binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3 PubMed DOI
Carruthers FL, Shum-Thomas T, Conner AJ, Maharity HK (1995) The significance of antibiotic production by Pseudomonas aureofaciens PA147-2 for biological control of Phytophthora mega sperms root rot of asparagus. Plant Soil 170:339–344. https://doi.org/10.1007/bf00010487 DOI
Chang CJ, Floss HG, Hook DJ, Mabe JA, Manni PE, Martin LL, Schröder K, Shieh T (1981) The biosynthesis of the antibiotic pyrrolnitrin by Pseudomonas aureofaciens. J Antibiot 34:555–566. https://doi.org/10.7164/antibiotics.34.555 DOI
Chin AWTF, van den Broek D, Lugtenberg BJ, Bloemberg GV (2005) The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metabolite phenazine-1-carboxamide. Mol Plant Microbe Interact 18:244–253. https://doi.org/10.1094/MPMI.2001.14.8.969 DOI
Chu C-P, West TP (1990) Pyrimidine ribonucleoside catabolism in Pseudomonas fluorescens biotype A. Antonie Van Leeuwenhoek 57:253–257. https://doi.org/10.1007/bf00400157 PubMed DOI
Chunduru J, West TP (2018) Pyrimidine nucleotide synthesis in the emerging pathogen Pseudomonas monteilii. Can J Microbiol 64:432–438. https://doi.org/10.1139/cjm-2018-0015 PubMed DOI
deLeij FA, Sutton EJ, Whipps JM, Lynch JM (1994) Effect of a genetically modified Pseudomonas aureofaciens on indigenous microbial populations of wheat. FEMS Microbiol Ecol 13:249–257. https://doi.org/10.1111/J.1574-6941.1994.TB00072.X DOI
Domakonda A, West TP (2020) Control of pyrimidine nucleotide formation in Pseudomonas aurantiaca. Arch Microbiol 202:1551–1557. https://doi.org/10.1007/s00203-020-01842-x PubMed DOI
Elander RP, Mabe JA, HR, HamillGorman M (1968) Metabolism of tryptophan by Pseudomonasaureofaciens. J Bacteriol 161:1171–1175. https://doi.org/10.1016/j.jaridenv.2004.09.010 DOI
Gamar P, Saurio LF, Benhamou N, Bélanger RR, Paulitz TC (1997) Novel butyrolactones with antifungal activity produced by Pseudomonas aureofaciens strain 63–28. J Antibiot 50:742–749. https://doi.org/10.7164/antibiotics.50.742 DOI
Gill R, West TP (2022) Control of a pyrimidine ribonucleotide salvage pathway in Pseudomonas oleovorans. Arch Microbiol 204:383. https://doi.org/10.1007/s00203-022-03016-3 PubMed DOI
Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153. https://doi.org/10.1146/annurev.phyto.41.052002.095656 PubMed DOI
Harrison LA, Letendre LEQ, Kovacevich P, Pierson E, Weller D (1993) Purification of an antibiotic effective against Gaeumannomyces graminis var, tritici produced by a biocontrol agent, Pseudomonas aureofaciens. Soil Biol Biochem 25:215–220. https://doi.org/10.1016/0038-0717(93)90029-B DOI
Haugaard LE, West TP (2002) Pyrimidine biosynthesis in Pseudomonas oleovorans. J Appl Microbiol 92:517–525. https://doi.org/10.1046/j.1365-2672.2002.01555.x PubMed DOI
Haynes WC, Stodala JM, Locke JM, Pridham TG, Conway HF, Sohns VE, Jackson RW (1956) Pseudomonas aureofaciens Kluyver and phenazine α-carboxylic acid, its characteristic pigment. J Bacteriol 72:412–417. https://doi.org/10.1128/jb.72.3.412-417.1956 PubMed DOI PMC
Jung WJ, Park RD, Mabood F, Souleimanov A, Smith DL (2011) Effects of Pseudomonas aureofaciens 63–28 on defense responses in soybean plants infected by Rhizoctonia solani. J Microbiol Biotechnol 21:379–386. https://doi.org/10.4014/jmb.1012.12001 PubMed DOI
Kluyver AJ (1956) Pseudomonas aureofaciens Nov. Spec and Its Pigments J Bacteriol 72:406–411. https://doi.org/10.1128/jb.72.3.406-411.1956 PubMed DOI
Lamb TG, Tonkyn DW, Kluepfel DA (1996) Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Can J Microbiol 42:1112–1120. https://doi.org/10.1139/m96-143 DOI
Maddula VSRK, Pierson EA, Pierson LS (2008) Altering the ratio of phenazines in Pseudomonas chlororaphis (aureofaciens) strain 30–84: effects on biofilm formation and pathogen inhibition. J Bacteriol 190:2759–2766. https://doi.org/10.1128/jb.01587-07 PubMed DOI PMC
Mandryk MN, Kolomiets EI, Dey ES (2007) Characterization of antimicrobial compounds produced by Pseudomonas aurantiaca S-1. Polish J Microbiol 56:245–250
Mehnaz S, Baig DN, Lazarovits G (2010) Genetic and phenotypic diversity of plant growth promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. J Microbiol Biotechnol 20:1614–1623. https://doi.org/10.4014/jmb.1005.05014 PubMed DOI
Mehnaz S, Saleem RS, Yameen B, Pianet I, Schnakenburg G, Pietraszkiewicz H, Valeriote F, Josten M, Sahl HG, Franzblau SG, Gross H (2013) Lahorenoic acids A-C, ortho-dialkyl-substituted aromatic acids from the biocontrol strain Pseudomonas aurantiaca PB-St2. J Nat Prod 76:135–141. https://doi.org/10.1021/np3005166 PubMed DOI
Murahari EC, West TP (2019) The pyrimidine biosynthetic pathway and its regulation in Pseudomonas jessenii. Antonie Van Leeuwenhoek 112:461–469. https://doi.org/10.1007/s10482-018-1168-8 PubMed DOI
Olson ES, Richards JH (1967) Structure of the orange pigment from Pseudomonas aureofaciens. J Org Chem 32:2887–2890. https://doi.org/10.1021/jo01284a052 DOI
Park JY, Oh SA, Anderson AJ, Neiswender J, Kim JC, Kim YC (2011) Production of the antifungal compounds phenazine and pyrrolnitrin from Pseudomonas chlororaphis O6 is differentially regulated by glucose. Lett Appl Microbiol 52:532–537. https://doi.org/10.1111/j.1472-765X.2011.03036.x PubMed DOI
Paulitz T, Nowak-Thompson B, Garnard P, Tsang E, Loper J (2000) A novel antifungal furanone from Pseudomonas aureofaciens, a biocontrol agent of plant pathogens. J Chem Ecol 26:1515–1524. https://doi.org/10.1023/A:1005595927521 DOI
Peix A, Valverde A, Rivas R, Igual JM, Ramírez-Bahena M-H, Mateos PF, Santa-Regina I, Rodríguez-Barrueco C, Martínez-Molina E, Velázquez E (2007) Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov. and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov. Int J of System Evol Microbiol 57:1286–1290. https://doi.org/10.1099/ijs.0.64621-0 DOI
Pierson LS III, Keppenne VD, Wood DW (1994) Phenazine antibiotic synthesis in Pseudomonas aureofaciens 30–84 is regulated by PhzR in response to cell density. J Bacteriol 176:3966–3974. https://doi.org/10.1128/jb.176.13.3966-3974.1994 PubMed DOI PMC
Pierson LS, Gaffney T, Lam S, Gong F (1995) Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium Pseudomonas aureofaciens 30–84. FEMS Microbiol Lett 134:299–307. https://doi.org/10.1016/0378-1097(95)00423-x PubMed DOI
Pierson LS III, Pierson EA (1996) Phenazine antibiotic production in Pseudomonas aureofaciens: role in rhizosphere ecology and pathogen suppression. FEMS Microbiol Lett 136:101–108. https://doi.org/10.1016/0378-1097(95)00489-0 DOI
Sakai TS, Yu T-S, Taniguchi K, Omata S (1975) Purification of cytosine deaminase from Pseudomonas aureofaciens. Agric Biol Chem 39:2015–2020. https://doi.org/10.1080/00021369.1975.10861902 DOI
Santiago MF, West TP (2002a) Regulation of pyrimidine synthesis in Pseudomonas mendocina. J Basic Microbiol 42:75–79. https://doi.org/10.1002/1521-4028(200203)42:1%3c75::AID-JOBM75%3e3.0.CO;2-W PubMed DOI
Santiago MF, West TP (2002b) Control of pyrimidine formation in Pseudomonas putida ATCC 17536. Can J Microbiol 48:1076–1081. https://doi.org/10.1139/w02-110 PubMed DOI
Sigher WV, Nakatsu CH, Reicher ZJ, Turon RF (2001) Fate of the biological control agent Pseudomonasaureofaciens TX-1 after application to turfgrass. Appl Environ Microbiol 67:3542–3548. https://doi.org/10.1128/AEM.67.8.3542-3548.2001 DOI
Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271. https://doi.org/10.1099/00221287-43-2-159 PubMed DOI
Van Pée K-H, Salcher O, Fischer P, Bokel M, Lingens F (1983) The biosynthesis of brominated pyrrolnitrin derivatives by Pseudomonas aureofaciens. J Antibiot 3:1735–1742. https://doi.org/10.7164/antibiotics.36.1735 DOI
Vincent MN, Harrison LA, Brackin JM, Kovacevich PA, Mukerji P, Weller DM, Pierson EA (1991) Genetic analysis of the antifungal activity of a soilborne Pseudomonas aureofaciens strain. Appl Environ Microbiol 57:2928–2934. https://doi.org/10.1128/aem.57.10.2928-2934.1991 PubMed DOI PMC
West TP (1989) Isolation and characterization of thymidylate synthetase mutants of Xanthomonas maltophilia. Arch Microbiol 151:220–222. https://doi.org/10.1007/bf00413133 PubMed DOI
West TP (2002) Control of pyrimidine synthesis in Pseudomonas fragi. Lett Appl Microbiol 35:380–384. https://doi.org/10.1046/j.1472-765x.2002.01203.x PubMed DOI
West TP (2004) Regulation of pyrimidine nucleotide formation in Pseudomonas taetrolens ATCC 4683. Microbiol Res 159:29–33. https://doi.org/10.1016/j.micres.2004.01.007 PubMed DOI
West TP (2009) Regulation of pyrimidine formation in Pseudomonas lundensis. Can J Microbiol 55:261–268. https://doi.org/10.1139/w08-137 PubMed DOI
West TP (2023) Pyrimidine biosynthesis and ribonucleoside metabolism in species of Pseudomonas. Fermentation 9:955. https://doi.org/10.3390/fermentation9110955 DOI
West TP, Herlick SA, O’Donovan GA (1983) Inverse relationship between thymidylate synthetase and cytidine triphosphate synthetase activities during pyrimidine limitation in Salmonella typhimurium. FEMS Microbiol Lett 18:275–278. https://doi.org/10.1111/j.1574-6968.1983.tb00491.x DOI
Westcott SW, Kluepfel DA (1993) Inhibition of Criconemelia xenoplax egg hatch by Pseudomonas aureofaciens. Phytopathol 83:1245. https://doi.org/10.1094/Phyto-83-1245 DOI
Whistler CA, Pierson LS (2003) Repression of phenazine antibiotic production in Pseudomonas aureofaciens strain 30–84 by RpeA. J Bacteriol 185:3718–3725. https://doi.org/10.1128/jb.185.13.3718-3725.2003 PubMed DOI PMC