Proof-of-concept MALDI-TOF-MS assay for the detection of Toxin B enzymatic activity in Clostridioides difficile infection

. 2025 Mar 31 ; 13 (5) : e0245324. [epub] 20250331

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40162757

UNLABELLED: Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometers have become an integral part of all modern clinical microbiology laboratories. They serve as the key tool for pathogen identification and antibiotic resistance determination. However, certain limiting conditions must be fulfilled. The pathogen cannot be tested directly from the sample and requires the cultivation of a pure colony, which means that the standard protocol takes additional time, workforce, and consumables. The testing protocol is also more complicated when it comes to anaerobes. In our work, we focused on the functional detection of Clostridioides difficile, an important nosocomial human pathogen that is responsible for diarrhea and can lead to life-threatening colitis, as a model diagnostic problem. The virulence of C. difficile is mainly caused by two toxins, Toxin A and Toxin B. Established diagnostic methods, including nucleic acid amplification testing methods and immunoassays, detect the presence of the microorganism or the presence and concentration of the toxins, with limited ability to gauge infection severity based on the actual biochemical activity of the toxins and thus their potency to cause harm. This work presents proof-of-concept assays that indirectly determine the toxin activity in the human stool, a very complex matrix sample, using the natural RhoA protein as substrate. The RhoA protein substrate was recombinantly prepared with biotin tag modification, which allows its attachment to the NeutrAvidin MALDI chips. In the assay, the RhoA substrate anchored on the MALDI chip undergoes enzymatic glycosylation when exposed to the Toxin B in the stool sample, and the reaction product is then detected by MALDI-TOF mass spectrometry directly from the MALDI chip. The entire assay, from sampling to final mass spectrometry detection, was performed in situ, on the NeutrAvidin MALDI chip, which was prepared by unique surface modification technology also described in this work. The assay was successfully tested for the detection of Toxin B in a cohort of patient samples as well as in cell culture of C. difficile. IMPORTANCE: The diagnostics of Clostridioides difficile infection is usually based on the identification of the bacterial pathogen and/or on the detection of the Toxins A and B. Due to the variance in Toxins A and B activity across species, the toxin concentration determined by standard methods does not necessarily correlate with the severity of the disease. Assays that would target toxins' enzymatic activity are not routinely used because the requirements are unsuitable for clinical laboratories. In this study, we demonstrate a new approach that determines the presence and potency of Toxin B indirectly by determining its enzymatic activity rather than its concentration. This is performed by detecting mass difference due to glycosylation of RhoA substrate by Toxin B, which is then determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The presented proof-of-concept assay thus offers the possibility to quickly determine the activity of C. difficile toxins directly in the stool samples without pathogen cultivation.

Zobrazit více v PubMed

Angeletti S. 2017. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. J Microbiol Methods 138:20–29. doi:10.1016/j.mimet.2016.09.003 PubMed DOI

Calderaro A, Buttrini M, Martinelli M, Farina B, Moro T, Montecchini S, Arcangeletti MC, Chezzi C, De Conto F. 2021. Rapid classification of Clostridioides difficile strains using MALDI-TOF MS peak-based assay in comparison with PCR-ribotyping. Microorganisms 9:661. doi:10.3390/microorganisms9030661 PubMed DOI PMC

Moran-Gilad J, Yagel Y. 2021. Application and integration of omics-powered diagnostics in clinical and public health microbiology, p 1–240

Alcalá L, Marín M, Ruiz A, Quiroga L, Zamora-Cintas M, Fernández-Chico MA, Muñoz P, Rodríguez-Sánchez B. 2021. Identifying anaerobic bacteria using MALDI-TOF mass spectrometry: a four-year experience. Front Cell Infect Microbiol 11:521014. doi:10.3389/fcimb.2021.521014 PubMed DOI PMC

Hanišáková N, Vítězová M, Rittmann S. 2022. The historical development of cultivation techniques for methanogens and other strict anaerobes and their application in modern microbiology. Microorganisms 10:412. doi:10.3390/microorganisms10020412 PubMed DOI PMC

Fournier P-E, Drancourt M, Colson P, Rolain J-M, La Scola B, Raoult D. 2013. Modern clinical microbiology: new challenges and solutions. Nat Rev Microbiol 11:574–585. doi:10.1038/nrmicro3068 PubMed DOI PMC

Williamson CHD, Vazquez AJ, Nunnally AE, Kyger K, Fofanov VY, Furstenau TN, Hornstra HM, Terriquez J, Keim P, Sahl JW. 2024. ColiSeq: a multiplex amplicon assay that provides strain level resolution of Escherichia coli directly from clinical specimens. Microbiol Spectr 12:e0413923. doi:10.1128/spectrum.04139-23 PubMed DOI PMC

Edwards AN, Suárez JM, McBride SM. 2013. Culturing and maintaining Clostridium difficile in an anaerobic environment. J Vis Exp. doi:10.3791/50787 PubMed DOI PMC

Weiss A, Lopez CA, Beavers WN, Rodriguez J, Skaar EP. 2021. Clostridioides difficile strain-dependent and strain-independent adaptations to a microaerobic environment. Microb Genom 7:000738. doi:10.1099/mgen.0.000738 PubMed DOI PMC

Gateau C, Couturier J, Coia J, Barbut F. 2018. How to: diagnose infection caused by Clostridium difficile. Clin Microbiol Infect 24:463–468. doi:10.1016/j.cmi.2017.12.005 PubMed DOI

Kelly CP, LaMont JT. 2008. Clostridium difficile — more difficult than ever. N Engl J Med 359:1932–1940. doi:10.1056/NEJMra0707500 PubMed DOI

Aktories K, Schwan C, Jank T. 2017. Clostridium difficile Toxin biology. Annu Rev Microbiol 71:281–307. doi:10.1146/annurev-micro-090816-093458 PubMed DOI

Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, Farley MM, Holzbauer SM, Meek JI, Phipps EC, Wilson LE, Winston LG, Cohen JA, Limbago BM, Fridkin SK, Gerding DN, McDonald LC. 2015. Burden of Clostridium difficile infection in the United States. N Engl J Med 372:825–834. doi:10.1056/NEJMoa1408913 PubMed DOI PMC

Carroll KC, Mizusawa M. 2020. Clostridioides difficile infection: laboratory tests for the diagnosis of Clostridium difficile. Clin Colon Rectal Surg 33:73. doi:10.1055/s-0039-3400476 PubMed DOI PMC

Song Y. 2005. PCR-based diagnostics for anaerobic infections. Anaerobe 11:79–91. doi:10.1016/j.anaerobe.2004.10.006 PubMed DOI

Cymbal M, Chatterjee A, Baggott B, Auron M. 2024. Management of Clostridioides difficile infection: diagnosis, treatment, and future perspectives. Am J Med 137:571–576. doi:10.1016/j.amjmed.2024.03.024 PubMed DOI

Crobach MJT, Planche T, Eckert C, Barbut F, Terveer EM, Dekkers OM, Wilcox MH, Kuijper EJ. 2016. European Society of Clinical Microbiology and Infectious Diseases: update of the diagnostic guidance document for Clostridium difficile infection. Clin Microbiol Infect 22:S63–S81. doi:10.1016/j.cmi.2016.03.010 PubMed DOI

Bassi R, Prakash P, Oyetoran A, Elsadek R, Loseke I, Leibach JR. 2023. A review on Clostridioides difficile testing and how to approach patients with multiple negative tests: a case report. Cureus 15:e34285. doi:10.7759/cureus.34285 PubMed DOI PMC

Savidge TC, Pan W-H, Newman P, O’brien M, Anton PM, Pothoulakis C. 2003. Clostridium difficile Toxin B is an inflammatory enterotoxin in human intestine. Gastroenterology 125:413–420. doi:10.1016/s0016-5085(03)00902-8 PubMed DOI

Carter GP, Chakravorty A, Pham Nguyen TA, Mileto S, Schreiber F, Li L, Howarth P, Clare S, Cunningham B, Sambol SP, Cheknis A, Figueroa I, Johnson S, Gerding D, Rood JI, Dougan G, Lawley TD, Lyras D. 2015. Defining the roles of TcdA and TcdB in localized gastrointestinal disease, systemic organ damage, and the host response during Clostridium difficile infections. mBio 6:e00551. doi:10.1128/mBio.00551-15 PubMed DOI PMC

Knight DR, Elliott B, Chang BJ, Perkins TT, Riley TV. 2015. Diversity and evolution in the genome of Clostridium difficile. Clin Microbiol Rev 28:721–741. doi:10.1128/CMR.00127-14 PubMed DOI PMC

Ramírez-Vargas G, López-Ureña D, Badilla A, Orozco-Aguilar J, Murillo T, Rojas P, Riedel T, Overmann J, González G, Chaves-Olarte E, Quesada-Gómez C, Rodríguez C. 2018. Novel Clade C-I Clostridium difficile strains escape diagnostic tests, differ in pathogenicity potential and carry toxins on extrachromosomal elements. Sci Rep 8:13951. doi:10.1038/s41598-018-32390-6 PubMed DOI PMC

Arnold BJ, Huang IT, Hanage WP. 2022. Horizontal gene transfer and adaptive evolution in bacteria. Nat Rev Microbiol 20:206–218. doi:10.1038/s41579-021-00650-4 PubMed DOI

Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EPC, de la Cruz F. 2010. Mobility of plasmids. Microbiol Mol Biol Rev 74:434–452. doi:10.1128/MMBR.00020-10 PubMed DOI PMC

Smits WK, Roseboom AM, Corver J. 2022. Plasmids of Clostridioides difficile. Curr Opin Microbiol 65:87–94. doi:10.1016/j.mib.2021.10.016 PubMed DOI

Li Y, Sousa R. 2012. Expression and purification of E. coli BirA biotin ligase for in vitro biotinylation. Protein Expr Purif 82:162–167. doi:10.1016/j.pep.2011.12.008 PubMed DOI PMC

Pompach P, Nováková J, Kavan D, Benada O, Růžička V, Volný M, Novák P. 2016. Planar functionalized surfaces for direct immunoaffinity desorption/ionization mass spectrometry. Clin Chem 62:270–278. doi:10.1373/clinchem.2015.244004 PubMed DOI

Pompach P, Benada O, Rosůlek M, Darebná P, Hausner J, Růžička V, Volný M, Novák P. 2016. Protein chips compatible with MALDI mass spectrometry prepared by ambient ion landing. Anal Chem 88:8526–8534. doi:10.1021/acs.analchem.6b01366 PubMed DOI

Dvorak J, Novakova J, Kraftova L, Studentova V, Matejovic M, Radej J, Karvunidis T, Horak J, Kralovcova M, Hrabak J, Kalaninova Z, Volny M, Novak P, Pompach P. 2023. The rapid detection of procalcitonin in septic serum using immunoaffinity MALDI chips. Clin Proteomics 20:20. doi:10.1186/s12014-023-09410-3 PubMed DOI PMC

Darebna P, Spicka J, Kucera R, Topolcan O, Navratilova E, Ruzicka V, Volny M, Novak P, Pompach P. 2018. Detection and quantification of carbohydrate-deficient transferrin by MALDI-compatible protein chips prepared by ambient ion soft landing. Clin Chem 64:1319–1326. doi:10.1373/clinchem.2017.285452 PubMed DOI

Pollock NR, Banz A, Chen X, Williams D, Xu H, Cuddemi CA, Cui AX, Perrotta M, Alhassan E, Riou B, Lantz A, Miller MA, Kelly CP. 2019. Comparison of Clostridioides difficile stool Toxin concentrations in adults with symptomatic infection and asymptomatic carriage using an ultrasensitive quantitative immunoassay. Clin Infect Dis 68:78–86. doi:10.1093/cid/ciy415 PubMed DOI PMC

Ueda K, Kawahara K, Kimoto N, Yamaguchi Y, Yamada K, Oki H, Yoshida T, Matsuda S, Matsumoto Y, Motooka D, Kawatsu K, Iida T, Nakamura S, Ohkubo T, Yonogi S. 2022. Analysis of the complete genome sequences of Clostridium perfringens strains harbouring the binary enterotoxin BEC gene and comparative genomics of pCP13-like family plasmids. BMC Genomics 23:226. doi:10.1186/s12864-022-08453-4 PubMed DOI PMC

Krutova M, de Meij TGJ, Fitzpatrick F, Drew RJ, Wilcox MH, Kuijper EJ. 2022. How to: Clostridioides difficile infection in children. Clin Microbiol Infect 28:1085–1090. doi:10.1016/j.cmi.2022.03.001 PubMed DOI

Genth H, Schelle I, Just I. 2016. Metal ion activation of Clostridium sordellii lethal Toxin and Clostridium difficile Toxin B. Toxins (Basel) 8:109. doi:10.3390/toxins8040109 PubMed DOI PMC

Amy J, Johanesen P, Lyras D. 2015. Extrachromosomal and integrated genetic elements in Clostridium difficile. Plasmid 80:97–110. doi:10.1016/j.plasmid.2015.04.006 PubMed DOI

Adams V, Li J, Wisniewski JA, Uzal FA, Moore RJ, McClane BA, et al. . 2015. Virulence plasmids of spore-forming bacteria, p 533–557. In Plasmids: biology and impact in biotechnology and discovery PubMed PMC

Abbas A, Zackular JP. 2020. Microbe–microbe interactions during Clostridioides difficile infection. Curr Opin Microbiol 53:19–25. doi:10.1016/j.mib.2020.01.016 PubMed DOI PMC

Krásný L, Pompach P, Strohalm M, Obsilova V, Strnadová M, Novák P, Volný M. 2012. In-situ enrichment of phosphopeptides on MALDI plates modified by ambient ion landing. J Mass Spectrom 47:1294–1302. doi:10.1002/jms.3081 PubMed DOI

Self AJ, Hall A. 1995. Purification of recombinant Rho/Rac/G25K from Escherichia coli. Methods Enzymol 256:3–10. doi:10.1016/0076-6879(95)56003-3 PubMed DOI

Cohen SL, Chait BT. 1996. Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal Chem 68:31–37. doi:10.1021/ac9507956 PubMed DOI

Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, Kundu DJ, Prakash A, Frericks-Zipper A, Eisenacher M, Walzer M, Wang S, Brazma A, Vizcaíno JA. 2022. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50:D543–D552. doi:10.1093/nar/gkab1038 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...