Genomic context-dependent histone H3K36 methylation by three Drosophila methyltransferases and implications for dedicated chromatin readers

. 2025 Mar 20 ; 53 (6) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40164442

Grantová podpora
BE1140/11-1 DFG CEP - Centrální evidence projektů

Methylation of histone H3 at lysine 36 (H3K36me3) marks active chromatin. The mark is interpreted by epigenetic readers that assist transcription and safeguard chromatin fiber integrity. In Drosophila, the chromodomain protein MSL3 binds H3K36me3 at X-chromosomal genes to implement dosage compensation. The PWWP-domain protein JASPer recruits the JIL1 kinase to active chromatin on all chromosomes. Because depletion of K36me3 had variable, locus-specific effects on the interactions of those readers, we systematically studied K36 methylation in a defined cellular model. Contrasting prevailing models, we found that K36me1, K36me2, and K36me3 each contribute to distinct chromatin states. Monitoring the changing K36 methylation landscape upon depletion of the three methyltransferases Set2, NSD, and Ash1 revealed local, context-specific methylation signatures. Each methyltransferase governs K36 methylation in dedicated genomic regions, with minor overlaps. Set2 catalyzes K36me3 predominantly at transcriptionally active euchromatin. NSD places K36me2/3 at defined loci within pericentric heterochromatin and on weakly transcribed euchromatic genes. Ash1 deposits K36me1 at putative enhancers. The mapping of MSL3 and JASPer suggested that they bind K36me2 in addition to K36me3, which was confirmed by direct affinity measurement. This dual specificity attracts the readers to a broader range of chromosomal locations and increases the robustness of their actions.

Před aktualizací

10.1093/nar/gkae449 PubMed

Zobrazit více v PubMed

Gorkin DU, Barozzi I, Zhao Yet al.. An atlas of dynamic chromatin landscapes in mouse fetal development. Nature. 2020; 583:744–51. 10.1038/s41586-020-2093-3. PubMed DOI PMC

Kharchenko PV, Alekseyenko AA, Schwartz YBet al.. Comprehensive analysis of the chromatin landscape in PubMed DOI PMC

Delandre C, McMullen JPD, Paulsen Jet al.. Eight principal chromatin states functionally segregate the fly genome into developmental and housekeeping roles. bioRxiv1 November 2022, preprint: not peer reviewed 10.1101/2022.10.30.514435. DOI

Luco RF, Allo M, Schor IEet al.. Epigenetics in alternative pre-mRNA splicing. Cell. 2011; 144:16–26. 10.1016/j.cell.2010.11.056. PubMed DOI PMC

Sorenson MR, Jha DK, Ucles SAet al.. Histone H3K36 methylation regulates pre-mRNA splicing in PubMed DOI PMC

LeRoy G, Oksuz O, Descostes Net al.. LEDGF and HDGF2 relieve the nucleosome-induced barrier to transcription in differentiated cells. Sci Adv. 2019; 5:eaay3068. 10.1126/sciadv.aay3068. PubMed DOI PMC

Kim JH, Lee BB, Oh YMet al.. Modulation of mRNA and lncRNA expression dynamics by the Set2-Rpd3S pathway. Nat Commun. 2016; 7:13534. 10.1038/ncomms13534. PubMed DOI PMC

Martin BJ, McBurney KL, Maltby VEet al.. Histone H3K4 and H3K36 methylation independently recruit the NuA3 histone acetyltransferase in PubMed DOI PMC

Jha DK, Strahl BD. An RNA polymerase II-coupled function for histone H3K36 methylation in checkpoint activation and DSB repair. Nat Commun. 2014; 5:3965. 10.1038/ncomms4965. PubMed DOI PMC

Carvalho S, Vitor AC, Sridhara SCet al.. SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint. eLife. 2014; 3:e02482. 10.7554/eLife.02482. PubMed DOI PMC

Daugaard M, Baude A, Fugger Ket al.. LEDGF (p75) promotes DNA-end resection and homologous recombination. Nat Struct Mol Biol. 2012; 19:803–10. 10.1038/nsmb.2314. PubMed DOI

Huang H, Weng H, Zhou Ket al.. Histone H3 trimethylation at lysine 36 guides m PubMed DOI PMC

Weinberg DN, Papillon-Cavanagh S, Chen Het al.. The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature. 2019; 573:281–6. 10.1038/s41586-019-1534-3. PubMed DOI PMC

Dukatz M, Holzer K, Choudalakis Met al.. H3K36me2/3 binding and DNA binding of the DNA methyltransferase DNMT3A PWWP domain both contribute to its chromatin interaction. J Mol Biol. 2019; 431:5063–74. 10.1016/j.jmb.2019.09.006. PubMed DOI

Schmitges FW, Prusty AB, Faty Met al.. Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell. 2011; 42:330–41. 10.1016/j.molcel.2011.03.025. PubMed DOI

Alabert C, Loos C, Voelker-Albert Met al.. Domain model explains propagation dynamics and stability of histone H3K27 and H3K36 methylation landscapes. Cell Rep. 2020; 30:1223–34. 10.1016/j.celrep.2019.12.060. PubMed DOI

Wagner EJ, Carpenter PB. Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol. 2012; 13:115–26. 10.1038/nrm3274. PubMed DOI PMC

Ye C, Sutter BM, Wang Yet al.. A metabolic function for phospholipid and histone methylation. Mol Cell. 2017; 66:180–93. 10.1016/j.molcel.2017.02.026. PubMed DOI PMC

Carrozza MJ, Li B, Florens Let al.. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell. 2005; 123:581–92. 10.1016/j.cell.2005.10.023. PubMed DOI

McCauley BS, Sun L, Yu Ret al.. Altered chromatin states drive cryptic transcription in aging mammalian stem cells. Nat Aging. 2021; 1:684–97. 10.1038/s43587-021-00091-x. PubMed DOI PMC

Luco RF, Pan Q, Tominaga Ket al.. Regulation of alternative splicing by histone modifications. Science. 2010; 327:996–1000. 10.1126/science.1184208. PubMed DOI PMC

Sural TH, Peng S, Li Bet al.. The MSL3 chromodomain directs a key targeting step for dosage compensation of the PubMed DOI PMC

McKay DJ, Klusza S, Penke TJet al.. Interrogating the function of metazoan histones using engineered gene clusters. Dev Cell. 2015; 32:373–86. 10.1016/j.devcel.2014.12.025. PubMed DOI PMC

Salzler HR, Vandadi V, McMichael BDet al.. Distinct roles for canonical and variant histone H3 lysine-36 in Polycomb silencing. Sci Adv. 2023; 9:eadf2451. 10.1126/sciadv.adf2451. PubMed DOI PMC

Dorafshan E, Kahn TG, Glotov Aet al.. Ash1 counteracts Polycomb repression independent of histone H3 lysine 36 methylation. EMBO Rep. 2019; 20:e46762. 10.15252/embr.201846762. PubMed DOI PMC

Meers MP, Henriques T, Lavender CAet al.. Histone gene replacement reveals a post-transcriptional role for H3K36 in maintaining metazoan transcriptome fidelity. eLife. 2017; 6:e23249. 10.7554/eLife.23249. PubMed DOI PMC

Brown JC, McMichael BD, Vandadi Vet al.. Lysine-36 of PubMed DOI PMC

Lindehell H, Glotov A, Dorafshan Eet al.. The role of H3K36 methylation and associated methyltransferases in chromosome-specific gene regulation. Sci Adv. 2021; 7:eabh4390. 10.1126/sciadv.abh4390. PubMed DOI PMC

Soshnev AA, Josefowicz SZ, Allis CD. Greater than the sum of parts: complexity of the dynamic epigenome. Mol Cell. 2016; 62:681–94. 10.1016/j.molcel.2016.05.004. PubMed DOI PMC

Wang H, Farnung L, Dienemann Cet al.. Structure of H3K36-methylated nucleosome–PWWP complex reveals multivalent cross-gyre binding. Nat Struct Mol Biol. 2020; 27:8–13. 10.1038/s41594-019-0345-4. PubMed DOI PMC

Koutna E, Lux V, Kouba Tet al.. Multivalency of nucleosome recognition by LEDGF. Nucleic Acids Res. 2023; 51:10011–25. 10.1093/nar/gkad674. PubMed DOI PMC

Zhang P, Du J, Sun Bet al.. Structure of human MRG15 chromo domain and its binding to Lys36-methylated histone H3. Nucleic Acids Res. 2006; 34:6621–8. 10.1093/nar/gkl989. PubMed DOI PMC

Li W, Cui H, Lu Zet al.. Structure of histone deacetylase complex Rpd3S bound to nucleosome. Nat Struct Mol Biol. 2023; 30:1893–901. 10.1038/s41594-023-01121-5. PubMed DOI

Musselman CA, Gibson MD, Hartwick EWet al.. Binding of PHF1 Tudor to H3K36me3 enhances nucleosome accessibility. Nat Commun. 2013; 4:2969. 10.1038/ncomms3969. PubMed DOI PMC

Larschan E, Alekseyenko AA, Gortchakov AAet al.. MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism. Mol Cell. 2007; 28:121–33. 10.1016/j.molcel.2007.08.011. PubMed DOI

Albig C, Wang C, Dann GPet al.. JASPer controls interphase histone H3S10 phosphorylation by chromosomal kinase JIL-1 in PubMed DOI PMC

Bell O, Wirbelauer C, Hild Met al.. Localized H3K36 methylation states define histone H4K16 acetylation during transcriptional elongation in PubMed DOI PMC

Alekseyenko AA, Gorchakov AA, Zee BMet al.. Heterochromatin-associated interactions of PubMed DOI PMC

Klymenko T, Muller J. The histone methyltransferases Trithorax and Ash1 prevent transcriptional silencing by Polycomb group proteins. EMBO Rep. 2004; 5:373–7. 10.1038/sj.embor.7400111. PubMed DOI PMC

Tanaka Y, Katagiri Z, Kawahashi Ket al.. Trithorax-group protein ASH1 methylates histone H3 lysine 36. Gene. 2007; 397:161–8. 10.1016/j.gene.2007.04.027. PubMed DOI

Huang C, Yang F, Zhang Zet al.. Mrg15 stimulates Ash1 H3K36 methyltransferase activity and facilitates Ash1 Trithorax group protein function in PubMed DOI PMC

Bell O, Conrad T, Kind Jet al.. Transcription-coupled methylation of histone H3 at lysine 36 regulates dosage compensation by enhancing recruitment of the MSL complex in PubMed DOI PMC

Lhoumaud P, Hennion M, Gamot Aet al.. Insulators recruit histone methyltransferase dMes4 to regulate chromatin of flanking genes. EMBO J. 2014; 33:1599–613. 10.15252/embj.201385965. PubMed DOI PMC

Schmahling S, Meiler A, Lee Yet al.. Regulation and function of H3K36 di-methylation by the trithorax-group protein complex AMC. Development. 2018; 145:dev163808. 10.1242/dev.163808. PubMed DOI PMC

Schwartz YB, Kahn TG, Stenberg Pet al.. Alternative epigenetic chromatin states of Polycomb target genes. PLoS Genet. 2010; 6:e1000805. 10.1371/journal.pgen.1000805. PubMed DOI PMC

Villa R, Jagtap PKA, Thomae AWet al.. Divergent evolution toward sex chromosome-specific gene regulation in PubMed DOI PMC

Schindelin J, Arganda-Carreras I, Frise Eet al.. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9:676–82. 10.1038/nmeth.2019. PubMed DOI PMC

Stirling DR, Swain-Bowden MJ, Lucas AMet al.. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics. 2021; 22:433. 10.1186/s12859-021-04344-9. PubMed DOI PMC

Muller M, Schauer T, Krause Set al.. Two-step mechanism for selective incorporation of lncRNA into a chromatin modifier. Nucleic Acids Res. 2020; 48:7483–501. PubMed PMC

Chaouch A, Berlandi J, Chen CCLet al.. Histone H3.3 K27M and K36M mutations de-repress transposable elements through perturbation of antagonistic chromatin marks. Mol Cell. 2021; 81:4876–90. 10.1016/j.molcel.2021.10.008. PubMed DOI PMC

Depierre D, Perrois C, Schickele Net al.. Chromatin in 3D distinguishes dMes-4/NSD and Hypb/dSet2 in protecting genes from H3K27me3 silencing. Life Sci Alliance. 2023; 6:e202302038. 10.26508/lsa.202302038. PubMed DOI PMC

Eggers N, Gkountromichos F, Krause Set al.. Physical interaction between MSL2 and CLAMP assures direct cooperativity and prevents competition at composite binding sites. Nucleic Acids Res. 2023; 51:9039–54. 10.1093/nar/gkad680. PubMed DOI PMC

Borner K, Becker PB. Splice variants of the SWR1-type nucleosome remodeling factor Domino have distinct functions during PubMed DOI

Girardot C, Scholtalbers J, Sauer Set al.. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers. BMC Bioinformatics. 2016; 17:419. 10.1186/s12859-016-1284-2. PubMed DOI PMC

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9:357–9. 10.1038/nmeth.1923. PubMed DOI PMC

Li H, Handsaker B, Wysoker Aet al.. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25:2078–9. 10.1093/bioinformatics/btp352. PubMed DOI PMC

Heinz S, Benner C, Spann Net al.. Simple combinations of lineage-determining transcription factors prime PubMed DOI PMC

Robinson JT, Thorvaldsdottir H, Turner Det al.. igv.js: an embeddable JavaScript implementation of the Integrative Genomics Viewer (IGV). Bioinformatics. 2023; 39:btac830. 10.1093/bioinformatics/btac830. PubMed DOI PMC

Quinlan AR BEDTools: the Swiss-army tool for genome feature analysis. Curr Protoc Bioinformatics. 2014; 47:11.12.1–34. 10.1002/0471250953.bi1112s47. PubMed DOI PMC

Zhang Y, Liu T, Meyer CAet al.. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008; 9:R137. 10.1186/gb-2008-9-9-r137. PubMed DOI PMC

R Core Team R: A Language and Environment for Statistical Computing. 2020; Vienna, Austria: R Foundation for Statistical Computing.

Anand L, Rodriguez Lopez CM. ChromoMap: an R package for interactive visualization of multi-omics data and annotation of chromosomes. BMC Bioinformatics. 2022; 23:33. 10.1186/s12859-021-04556-z. PubMed DOI PMC

Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016; 32:2847–9. 10.1093/bioinformatics/btw313. PubMed DOI

Lun AT, Smyth GK. csaw: a Bioconductor package for differential binding analysis of ChIP-seq data using sliding windows. Nucleic Acids Res. 2016; 44:e45. 10.1093/nar/gkv1191. PubMed DOI PMC

Henikoff S, Henikoff JG, Sakai Aet al.. Genome-wide profiling of salt fractions maps physical properties of chromatin. Genome Res. 2009; 19:460–9. 10.1101/gr.087619.108. PubMed DOI PMC

Hendy O, Serebreni L, Bergauer Ket al.. Developmental and housekeeping transcriptional programs in PubMed DOI PMC

Chintapalli VR, Wang J, Dow JA. Using FlyAtlas to identify better PubMed DOI

Sun Z, Lin Y, Islam MTet al.. Chromatin regulation of transcriptional enhancers and cell fate by the Sotos syndrome gene NSD1. Mol Cell. 2023; 83:2398–2416.e12. 10.1016/j.molcel.2023.06.007. PubMed DOI PMC

Hinrichs AS, Karolchik D, Baertsch Ret al.. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 2006; 34:D590–8. 10.1093/nar/gkj144. PubMed DOI PMC

Egelhofer TA, Minoda A, Klugman Set al.. An assessment of histone-modification antibody quality. Nat Struct Mol Biol. 2011; 18:91–3. 10.1038/nsmb.1972. PubMed DOI PMC

Bonnet J, Lindeboom RGH, Pokrovsky Det al.. Quantification of proteins and histone marks in PubMed DOI

de Almeida SF, Grosso AR, Koch Fet al.. Splicing enhances recruitment of methyltransferase HYPB/Setd2 and methylation of histone H3 Lys36. Nat Struct Mol Biol. 2011; 18:977–83. 10.1038/nsmb.2123. PubMed DOI

Lindehell H, Schwartz YB, Larsson J. Methylation of lysine 36 on histone H3 is required to control transposon activities in somatic cells. Life Sci Alliance. 2023; 6:e202201832. 10.26508/lsa.202201832. PubMed DOI PMC

Kaminker JS, Bergman CM, Kronmiller Bet al.. The transposable elements of the PubMed DOI PMC

Holowatyj A, Yang ZQ, Pile LA. Histone lysine demethylases in PubMed DOI PMC

Sharda A, Humphrey TC. The role of histone H3K36me3 writers, readers and erasers in maintaining genome stability. DNA Repair (Amst). 2022; 119:103407. 10.1016/j.dnarep.2022.103407. PubMed DOI

He J, Xu T, Zhao Fet al.. SETD2-H3K36ME3: an important bridge between the environment and tumors. Front Genet. 2023; 14:1204463. 10.3389/fgene.2023.1204463. PubMed DOI PMC

Vougiouklakis T, Hamamoto R, Nakamura Yet al.. The NSD family of protein methyltransferases in human cancer. Epigenomics. 2015; 7:863–74. 10.2217/epi.15.32. PubMed DOI

Zhang Y, Guo W, Feng Yet al.. Identification of the H3K36me3 reader LEDGF/p75 in the pancancer landscape and functional exploration in clear cell renal cell carcinoma. Comput Struct Biotechnol J. 2023; 21:4134–48. 10.1016/j.csbj.2023.08.023. PubMed DOI PMC

Nicetto D, Donahue G, Jain Tet al.. H3K9me3-heterochromatin loss at protein-coding genes enables developmental lineage specification. Science. 2019; 363:294–7. 10.1126/science.aau0583. PubMed DOI PMC

Becker JS, McCarthy RL, Sidoli Set al.. Genomic and proteomic resolution of heterochromatin and its restriction of alternate fate genes. Mol Cell. 2017; 68:1023–37. 10.1016/j.molcel.2017.11.030. PubMed DOI PMC

Shipman GA, Padilla R, Horth Cet al.. Systematic perturbations of SETD2, NSD1, NSD2, NSD3 and ASH1L reveals their distinct contributions to H3K36 methylation. Genome Biol. 2024; 25:263. 10.1186/s13059-024-03415-3. PubMed DOI PMC

Dorighi KM, Tamkun JW. The trithorax group proteins Kismet and ASH1 promote H3K36 dimethylation to counteract Polycomb group repression in PubMed DOI PMC

Barral A, Pozo G, Ducrot Let al.. SETDB1/NSD-dependent H3K9me3/H3K36me3 dual heterochromatin maintains gene expression profiles by bookmarking poised enhancers. Mol Cell. 2022; 82:816–32. 10.1016/j.molcel.2021.12.037. PubMed DOI PMC

Molenaar TM, van Leeuwen F. SETD2: from chromatin modifier to multipronged regulator of the genome and beyond. Cell Mol Life Sci. 2022; 79:346. 10.1007/s00018-022-04352-9. PubMed DOI PMC

Saha P, Sowpati DT, Soujanya Met al.. Interplay of pericentromeric genome organization and chromatin landscape regulates the expression of PubMed DOI PMC

Li W, Tian W, Yuan Get al.. Molecular basis of nucleosomal H3K36 methylation by NSD methyltransferases. Nature. 2021; 590:498–503. 10.1038/s41586-020-03069-8. PubMed DOI PMC

Willcockson MA, Healton SE, Weiss CNet al.. H1 histones control the epigenetic landscape by local chromatin compaction. Nature. 2021; 589:293–8. 10.1038/s41586-020-3032-z. PubMed DOI PMC

Hamagami N, Wu DY, Clemens AWet al.. NSD1 deposits histone H3 lysine 36 dimethylation to pattern non-CG DNA methylation in neurons. Mol Cell. 2023; 83:1412–28. 10.1016/j.molcel.2023.04.001. PubMed DOI PMC

Park IY, Powell RT, Tripathi DNet al.. Dual chromatin and cytoskeletal remodeling by SETD2. Cell. 2016; 166:950–62. 10.1016/j.cell.2016.07.005. PubMed DOI PMC

Kovatcheva M, Melendez E, Chondronasiou Det al.. Vitamin B PubMed DOI PMC

Sun Y, Ramesh V, Wei Fet al.. Methionine availability influences essential H3K36me3 dynamics during cell differentiation. bioRxiv22 November 2023, preprint: not peer reviewed 10.1101/2023.11.22.568331. DOI

Corless S, Singh N-P, Benabdhalla NSet al.. The bromodomain inhibitor JQ1 is a molecular glue targeting centromeres. bioRxiv15 March 2023, preprint: not peer reviewed 10.1101/2023.03.15.532673. DOI

Gershman A, Sauria MEG, Guitart Xet al.. Epigenetic patterns in a complete human genome. Science. 2022; 376:eabj5089. 10.1126/science.abj5089. PubMed DOI PMC

Villasenor R, Pfaendler R, Ambrosi Cet al.. ChromID identifies the protein interactome at chromatin marks. Nat Biotechnol. 2020; 38:728–36. 10.1038/s41587-020-0434-2. PubMed DOI PMC

Mito Y, Henikoff JG, Henikoff S. Genome-scale profiling of histone H3.3 replacement patterns. Nat Genet. 2005; 37:1090–7. 10.1038/ng1637. PubMed DOI

McKittrick E, Gafken PR, Ahmad Ket al.. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci USA. 2004; 101:1525–30. 10.1073/pnas.0308092100. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...