Uncaria tomentosa extract exerts antimicrobial activity against boar seminal bacteria and influences sperm resilience under different conditions

. 2025 ; 12 () : 1558650. [epub] 20250321

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40191089

Uncaria tomentosa (UT) or cat's claw, is a vine belonging to the Rubiaceae family and native to South and Central America. Various parts of the plant, including bark, showed many therapeutic activities (e.g., antioxidant and antibacterial), but the in vitro effects on gametes have still not been investigated. During boar semen storage for artificial insemination purposes, oxidative stress and bacterial contamination negatively affect sperm quality. In this study, we evaluated the tolerance of boar sperm to UT ethanolic extract at four concentrations (1.6 to 0.025 μg/mL). The analyses were carried out on sperm samples under oxidative stress, induced by H2O2 and Fe2+/Ascorbate, and during 96 h of semen storage at 17°C. The antibacterial activity of the extract (1,024 to 8 μg/mL) was tested against commercial strains and bacteria isolated from the semen. The treatments ranging from 0.4 to 0.025 μg/mL protected sperm membrane (p < 0.05) and preserved some kinetic parameters in samples under oxidative stress (Fe2+/Ascorbate). During semen storage, the extract did not show any cytotoxicity, and mean values of some sperm parameters were higher than the control group, although not significant (p > 0.05). All tested Gram-positive bacteria exhibited growth inhibition. The most frequently isolated Gram-negative bacteria from semen (i.e., Citrobacter koseri, Pseudomonas aeruginosa, Stenotrophomonas maltophilia) also showed complete growth inhibition, while the remaining strains showed a partial decrease in growth. Taken together, our findings show that Uncaria tomentosa is a promising plant-based additive for boar semen storage.

Zobrazit více v PubMed

Batiha GES, Beshbishy AM, Wasef L, Elewa YHA, El-Hack MEA, Taha AE, et al. . Uncaria tomentosa (willd. ex schult) DC: a review on chemical constituents and biological activities. Appl Sci. (2020) 10:1–12. 10.3390/app10082668 DOI

Keplinger K, Laus G, Wurm M, Dierich MP, Teppner H. Uncaria tomentosa (willd.) DC—ethnomedicinal use and new pharmacological, toxicological and botanical results. J Ethnopharmacol. (1998) 64:23–34. 10.1016/S0378-8741(98)00096-8 PubMed DOI

Falkiewicz B. Lukasiak J. Vilcacora [Uncaria tomentosa (willd) DC and Uncaria guianensis (aublet) gmell]—a review of published scientific literature. Case Rep Clin Pract Rev. (2001) 2:305–16.

Laus G, Brössner D, Keplinger K. Alkaloids of peruvian Uncaria tomentosa. Phytochemistry. (1997) 45:855–60. 10.1016/S0031-9422(97)00061-7 DOI

Peñaloza EMC, Kaiser S, De Resende PE, Pittol V, Carvalho ÂR, Ortega GG. Chemical composition variability in the Uncaria tomentosa (cat's claw) wild population. Quim Nova. (2015) 38:378–86. 10.5935/0100-4042.20150007 DOI

García R, Cayunao C, Bocic R, Backhouse N, Delporte C, Zaldivar M, et al. . Antimicrobial activity of isopteropodine. Zeitschrift Fur Naturforschung—Section C. J Biosci. (2005) 60:385–8. 10.1515/znc-2005-5-603 PubMed DOI

Navarro M, Arnaez E, Moreira I, Hurtado A, Monge D, Monagas M. Polyphenolic composition and antioxidant activity of Uncaria tomentosa commercial bark products. Antioxidants. (2019) 8:339. 10.3390/antiox8090339 PubMed DOI PMC

White G, Bourbonnais-spear N, Garner F. Antibacterial constituents from Uncaria tomentosa. Phytopharmacology. (2011) 1:16–9.

Dreifuss AA, Bastos-Pereira AL, Ávila TV, da Silva Soley B, Rivero AJ, Aguilar JL, et al. . Antitumoral and antioxidant effects of a hydroalcoholic extract of cat's claw (Uncaria tomentosa) (willd ex roem & schult) in an in vivo carcinosarcoma model. J Ethnopharmacol. (2010) 130:127–33. 10.1016/j.jep.2010.04.029 PubMed DOI

Oubaid EN, Abu-Raghif AR, Al-Sudani IM. Phytochemical screening and antioxidant activity of uncaria tomentosa extract: in vitro and in vivo studies. Med J Babylon. (2023) 20:136–42. 10.4103/MJBL.MJBL_310_22 DOI

Herrera DR, Durand-Ramirez JE, Falcão A, da Silva EJ, Santos EB, Gomes BP. Antimicrobial activity and substantivity of Uncaria tomentosa in infected root canal dentin Brazilian. Oral Research. (2016) 30:1–5. 10.1590/1807-3107BOR-2016.vol30.0061 PubMed DOI

Kloucek P, Polesny Z, Svobodova B, Vlkova E, Kokoska L. Antibacterial screening of some peruvian medicinal plants used in Callería District. J Ethnopharmacol. (2005) 99:309–12. 10.1016/j.jep.2005.01.062 PubMed DOI

Ros-Santaella JL, Pintus E. Plant extracts as alternative additives for sperm preservation. Antioxidants. (2021) 10:772. 10.3390/antiox10050772 PubMed DOI PMC

Riesenbeck A. Review on international trade with boar semen. Reprod Domest Anim. (2011) 46:1–3. 10.1111/j.1439-0531.2011.01869.x PubMed DOI

OECD-FAO . “Chapter 6: meat.” In: OECD-FAO Agricultural Outlook 2021–2030 (2021). p. 163–77. Available online at: https://openknowledge.fao.org/server/api/core/bitstreams/09e88a46-b005-4d65-8753-9714506afc38/content

Bonet S, Casas I, Holt WV, Yeste M. Boar Reproduction: Fundamentals and New Biotechnological Trends. Springer-Verlag Berlin Heidelberg (2014). p. 1–632.

Gadea J. Review: semen extenders used in the artificial insemination of swine. Span J Agric Res. (2003) 1:17–27. 10.5424/sjar/2003012-17 DOI

Aitken RJ. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol Reprod Dev. (2017) 84:1039–52. 10.1002/mrd.22871 PubMed DOI

Kuster CE, Althouse GC. The impact of bacteriospermia on boar sperm storage and reproductive performance. Theriogenology. (2016) 85:21–6. 10.1016/j.theriogenology.2015.09.049 PubMed DOI

Amidi F, Pazhohan A, Shabani Nashtaei M, Khodarahmian M, Nekoonam S. The role of antioxidants in sperm freezing: a review. Cell and Tissue Banking. (2016) 17:745–56. 10.1007/s10561-016-9566-5 PubMed DOI

Schulze M, Dathe M, Waberski D, Müller K. Liquid storage of boar semen: current and future perspectives on the use of cationic antimicrobial peptides to replace antibiotics in semen extenders. Theriogenology. (2016) 85:39–46. 10.1016/j.theriogenology.2015.07.016 PubMed DOI

Tauchen J, Bortl L, Huml L, Miksatkova P, Doskocil I, Marsik P, et al. . Phenolic composition, antioxidant and anti-proliferative activities of edible and medicinal plants from the peruvian amazon. Rev Bras Farmacogn. (2016) 26:728–37. 10.1016/j.bjp.2016.03.016 DOI

Vernon Singleton L, Orthofer R, Lamuela-Raventós RM. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. (1999) 299:152–78. 10.1016/S0076-6879(99)99017-1 DOI

Christ B, Müller KH. Zur serienmäßigen bestimmung des gehaltes an flavonol-derivaten in drogen. Archiv Der Pharmazie. (1960) 293:1033–42. 10.1002/ardp.19602931202 PubMed DOI

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. (1999) 26:1231–7. 10.1016/S0891-5849(98)00315-3 PubMed DOI

Sharma OP, Bhat TK. DPPH antioxidant assay revisited. Food Chem. (2009) 113:1202–5. 10.1016/j.foodchem.2008.08.008 PubMed DOI

Ou B, Hampsch-Woodill M, Prior RL. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. Food Chem. (2001) 49:4619–26. 10.1021/jf010586o PubMed DOI

Cao G, Alessio HM, Cutler RG. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic Biol Med. (1993) 14:303–11. 10.1016/0891-5849(93)90027-R PubMed DOI

Pintus E, Jovičić M, Kadlec M, Ros-Santaella JL. Divergent effect of fast- and slow-releasing H2S donors on boar spermatozoa under oxidative stress. Sci Rep. (2020) 10:1–11. 10.1038/s41598-020-63489-4 PubMed DOI PMC

Pintus E, Chinn AF, Kadlec M, García-Vázquez FA, Novy P, Matson JB, et al. . N-thiocarboxyanhydrides, amino acid-derived enzyme-activated H2S donors, enhance sperm mitochondrial activity in presence and absence of oxidative stress. BMC Vet Res. (2023) 19:1–13. 10.1186/s12917-023-03593-5 PubMed DOI PMC

Harrison RAP, Vickers SE. Use of fluorescent probes to assess membrane integrity in mammalian spermatozoa. J Reprod Fertil. (1990) 88:343–52. 10.1530/jrf.0.0880343 PubMed DOI

Ros-Santaella JL, Nový P, Scaringi M, Pintus E. Antimicrobial peptides and proteins as alternative antibiotics for porcine semen preservation. BMC Vet Res. (2024) 20:1–12. 10.1186/s12917-024-04105-9 PubMed DOI PMC

Sone M. Investigations on the control of bacteria in boar semen. Jpn J Anim Reprod. (1990) 36:23P−9P. 10.1262/jrd1977.36.23P DOI

Maroto Martín LO, Muñoz EC, De Cupere F, Van Driessche E, Echemendia-Blanco D, Rodríguez JMM, et al. . Bacterial contamination of boar semen affects the litter size. Anim Reprod Sci. (2010) 120:95–104. 10.1016/j.anireprosci.2010.03.008 PubMed DOI

Patel JB, Cockerill III, Franklin Bradford R PA, Eliopoulos GM, Hindler JA, Jenkins SG, et al. . M07-A9. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Wayne, PA: Clinical and Laboratory Standars Institute; (2015).

Althouse GC, Kuster CE, Clark SG, Weisiger RM. Field investigations of bacterial contaminants and their effects on extended porcine semen. Theriogenology. (2000) 53:1167–76. 10.1016/S0093-691X(00)00261-2 PubMed DOI

Sepúlveda L, Bussalleu E, Yeste M, Bonet S. Effects of different concentrations of Pseudomonas aeruginosa on boar sperm quality. Anim Reprod Sci. (2014) 150:96–106. 10.1016/j.anireprosci.2014.09.001 PubMed DOI

Navarro-Hoyos M, Alvarado-Corella D, Moreira-Gonzalez I, Arnaez-Serrano E, Monagas-Juan M. Polyphenolic composition and antioxidant activity of aqueous and ethanolic extracts from uncaria tomentosa bark and leaves. Antioxidants. (2018) 7:65. 10.3390/antiox7050065 PubMed DOI PMC

Gebalski J, Małkowska M, Graczyk F, Słomka A, Piskorska E, Gawenda-Kempczyńska D, et al. . Phenolic compounds and antioxidant and anti-enzymatic activities of selected adaptogenic plants from South America, Asia, and Africa. Molecules. (2023) 28:6004. 10.3390/molecules28166004 PubMed DOI PMC

Kośmider A, Czepielewska E, Kuraś M, Gulewicz K, Pietrzak W, Nowak R, et al. . Uncaria tomentosa leaves decoction modulates differently ROS production in cancer and normal cells, and effects cisplatin cytotoxicity. Molecules. (2017) 22:620. 10.3390/molecules22040620 PubMed DOI PMC

Júnior OT, Kuhn F, Mendonça Padilha PJ, Mota Vicente LR, Winckler da Costa S, Corrêa da Silva B, et al. . Survival of white spot syndrome virus–infected Litopenaeus vannamei fed with ethanol extract of Uncaria tomentosa. J World Aquacult Soc. (2018) 49:165–74. 10.1111/jwas.12483 DOI

Pilarski R, Zieliński H, Ciesiołka D, Gulewicz K. Antioxidant activity of ethanolic and aqueous extracts of Uncaria tomentosa (Willd.) DC. J Ethnopharmacol. (2006) 104:18–23. 10.1016/j.jep.2005.08.046 PubMed DOI

Sandoval M, Okuhama NN, Zhang XJ, Condezo LA, Lao J, Angeles FM, et al. . Anti-inflammatory and antioxidant activities of cat's claw (Uncaria tomentosa and Uncaria guianensis) are independent of their alkaloid content. Phytomedicine. (2002) 9:325–37. 10.1078/0944-7113-00117 PubMed DOI

Navarro-Hoyos M, Lebrón-Aguilar R, Quintanilla-López JE, Cueva C, Hevia D, Quesada S, et al. . Proanthocyanidin characterization bioactivity of extracts from different parts of Uncaria tomentosa L. (cat's claw). Antioxidants. (2017) 6:1–18. 10.3390/antiox6010012 PubMed DOI PMC

Urdanibia I, Taylor P. Uncaria tomentosa (Willd. ex Schult.) DC. and Uncaria guianensis (Aubl.) J.F. Gmell. In:Albuquerque U, Patil U, Máthé Á, editors. Medicinal and Aromatic Plants of South America. Medicinal and Aromatic Plants of the World, Vol 5. Dordrecht: Springer; (2018). 10.1007/978-94-024-1552-0_41 DOI

Bertol G, Franco L, De Oliveira BH. HPLC analysis of oxindole alkaloids in Uncaria tomentosa: sample preparation and analysis optimisation by factorial design. Phytochem Anal. (2012) 23:143–51. 10.1002/pca.1335 PubMed DOI

Bors M, Michałowicz J, Pilarski R, Sicińska P, Gulewicz K, Bukowska B. Studies of biological properties of Uncaria tomentosa extracts on human blood mononuclear cells. J Ethnopharmacol. (2012) 142:669–78. 10.1016/j.jep.2012.05.036 PubMed DOI

Xu QQ, Shaw PC, Hu Z, Yang W, Ip SP, Xian YF, et al. . Comparison of the chemical constituents and anti-Alzheimer's disease effects of Uncaria rhynchophylla and Uncaria tomentosa. Chin Med. (2021) 16:1–15. 10.1186/s13020-021-00514-2 PubMed DOI PMC

Chen X, Xu J, Mu X, Hu Y, Hu G, Duan H, et al. . Effects of rhynchophylline and isorhynchophylline on nitric oxide and endothelin-1 secretion from RIMECs induced by Listeriolysin O in vitro. Vet Microbiol. (2010) 143:262–9. 10.1016/j.vetmic.2009.11.008 PubMed DOI

Rowaiye AB, Ogugua AJ, Ibeanu G, Bur D, Asala MT, Ogbeide OB, et al. . Identifying potential natural inhibitors of Brucella melitensis methionyl-tRNA synthetase through an in-silico approach. PLoS Negl Trop Dis. (2022) 16:1–23. 10.1371/journal.pntd.0009799 PubMed DOI PMC

Arief I. The potential of Mitragyna speciosa leaves as a natural source of antioxidants for disease. J Integr Bioinform. (2024) 21:1–15. 10.1515/jib-2023-0030 PubMed DOI PMC

Jiang P, Chen L, Xu J, Liu W, Feng F, Qu W. Neuroprotective effects of rhynchophylline against Aβ1–42-induced oxidative stress, neurodegeneration, and memory impairment via Nrf2–ARE activation. Neurochem Res. (2021) 46:2439–50. 10.1007/s11064-021-03343-9 PubMed DOI

Kitajima M, Hashimoto KI, Yokoya M, Takayama H, Sandoval M, Aimi N. Two new nor-triterpene glycosides from Peruvian “Uña de Gato” (Uncaria tomentosa). J Nat Prod. (2003) 66:320–3. 10.1021/np0203741 PubMed DOI

Kitajima M, Hashimoto KI, Sandoval M, Aimi N, Takayama H. New oleanan-type triterpene and cincholic acid glycosides from Peruvian “Uña de Gato” (Uncaria tomentosa). Chem Pharm Bull. (2004) 52:1258–61. 10.1248/cpb.52.1258 PubMed DOI

Muhammad I, Dunbar DC, Khan RA, Ganzera M, Khan IA. Investigation of Uña de gato I. 7-deoxyloganic acid and 15N NMR spectroscopic studies on pentacyclic oxindole alkaloids from Uncaria tomentosa. Phytochemistry. (2001) 57:781–5. 10.1016/S0031-9422(01)00043-7 PubMed DOI

Tvrdá E, Benko F, Slanina T, du Plessis SS. The role of selected natural biomolecules in sperm production and functionality. Molecules. (2021) 26:5196. 10.3390/molecules26175196 PubMed DOI PMC

Burkitt MJ, Gilbert BC. Model studies of the iron-catalysed haber-weiss cycle and the ascorbate-driven fenton reaction. Free Radic Res. (1990) 10:265–80. 10.3109/10715769009149895 PubMed DOI

Oehninger S, Blackmore P, Mahony M, Hodgen G. Effects of hydrogen peroxide on human spermatozoa. J Assist Reprod Genet. (1995) 12:41–7. 10.1007/BF02214128 PubMed DOI

Pujianto D, Oktarina M, Sharma Sharaswati I, Yulhasri Y. Hydrogen peroxide has adverse effects on human sperm quality parameters, induces apoptosis, reduces survival. J Hum Reprod Sci. (2021) 14:121–8. 10.4103/jhrs.jhrs_241_20 PubMed DOI PMC

Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact. (2014) 224:164–75. 10.1016/j.cbi.2014.10.016 PubMed DOI

Broekhuijse MLWJ, Šoštarić E, Feitsma H, Gadella BM. Application of computer-assisted semen analysis to explain variations in pig fertility. J Anim Sci. (2012) 90:779–89. 10.2527/jas.2011-4311 PubMed DOI

Fernández-López P, Garriga J, Casas I, Yeste M, Bartumeus F. Predicting fertility from sperm motility landscapes. Commun Biol. (2022) 5:1–11. 10.1038/s42003-022-03954-0 PubMed DOI PMC

Duchnowicz P, Pilarski R, Michałowicz J, Bukowska B. Changes in human erythrocyte membrane exposed to aqueous and ethanolic extracts from Uncaria tomentosa. Molecules. (2021) 26:1–15. 10.3390/molecules26113189 PubMed DOI PMC

Karonen M. Insights into polyphenol–lipid interactions: chemical methods, molecular aspects and their effects on membrane structures. Plants. (2022) 11:1809. 10.3390/plants11141809 PubMed DOI PMC

Dangles O. Antioxidant activity of plant phenols: chemical mechanisms and biological significance. Curr Org Chem. (2012) 16:692–714. 10.2174/138527212799957995 DOI

González-Burgos E, Gómez-Serranillos MP. Terpene compounds in nature: a review of their potential antioxidant activity. Curr Med Chem. (2012) 19:5319–41. 10.2174/092986712803833335 PubMed DOI

Hider RC, Liu ZD, Khodr HH. Metal chelation of polyphenols. Methods Enzymol. (2001) 335:190–203. 10.1016/S0076-6879(01)35243-6 PubMed DOI

Zahari A, Ablat A, Omer N, Nafiah MA, Sivasothy Y, Mohamad J, et al. . Ultraviolet-visible study on acid-base equilibria of aporphine alkaloids with antiplasmodial and antioxidant activities from Alseodaphne corneri and Dehaasia longipedicellata. Sci Rep. (2016) 6:21517. 10.1038/srep21517 PubMed DOI PMC

Kolak U, Oztürk M, Ozgökçe F, Ulubelen A. Norditerpene alkaloids from Delphinium linearilobum and antioxidant activity. Phytochemistry. (2006) 67:2170–5. 10.1016/j.phytochem.2006.06.006 PubMed DOI

Bennemann PE, Machado SA, Girardini LK, Sonálio K, Tonin AA. Bacterial contaminants and antimicrobial susceptibility profile of boar semen in Southern Brazil Studs. Revista MVZ Cordoba. (2018) 23:6637–48. 10.21897/rmvz.1338 DOI

Dalmutt AC, Moreno LZ, Gomes VTM, Cunha MPV, Barbosa MRF, Sato MIZ, et al. . Characterization of bacterial contaminants of boar semen: identification by MALDI-TOF mass spectrometry and antimicrobial susceptibility profiling. J Appl Anim Res. (2020) 48:559–65. 10.1080/09712119.2020.1848845 DOI

Kim H, Byun J, Shin D, Kim H, Yoon H, Park C, et al. . Bacterial contaminants in extended boar semen and selection of effective antimicrobials. Korean J Vet Res. (2010) 50:125–6.

Úbeda JL, Ausejo R, Dahmani Y, Falceto MV, Usan A, Malo C, et al. . Adverse effects of members of the enterobacteriaceae family on boar sperm quality. Theriogenology. (2013) 80:565–70. 10.1016/j.theriogenology.2013.05.022 PubMed DOI

Mei CY, Jiao X, Wu H, Wang ZY, Tian YQ, Pan ZM, et al. . Detection of cfr in Leclercia adecarboxylata from pig feed, China. J Antimicrob Chemother. (2022) 77:1500–2. 10.1093/jac/dkac032 PubMed DOI

Wei M, Flowers L, Knight SAB, Zheng Q, Murga-Garrido S, Uberoi A, et al. . Harnessing diversity and antagonism within the pig skin microbiota to identify novel mediators of colonization resistance to methicillin-resistant Staphylococcus aureus. MSphere. (2023) 8:e0017723. 10.1128/msphere.00177-23 PubMed DOI PMC

Ccahuana-Vasquez RA, Ferreira dos Santos SS, Koga-Ito CY, Cardoso Jorge AO. Antimicrobial activity of Uncaria tomentosa against oral human pathogens. Braz Oral Res. (2007) 21:46–50. 10.1590/S1806-83242007000100008 PubMed DOI

Bae JY, Seo YH, Oh SW. Antibacterial activities of polyphenols against foodborne pathogens and their application as antibacterial agents. Food Sci Biotechnol. (2022) 31:985–97. 10.1007/s10068-022-01058-3 PubMed DOI PMC

Copp BR. Antimycobacterial natural products. Nat Prod Rep. (2003) 20:535–57. 10.1039/b212154a PubMed DOI

Nogueira JOE, Campolina GA, Batista LR, Alves E, Caetano ARS, Brandão RM, et al. . Mechanism of action of various terpenes and phenylpropanoids against Escherichia coli and Staphylococcus aureus. FEMS microbiology letters. (2021) 368:fnab052. 10.1093/femsle/fnab052 PubMed DOI

Khetmalis YM, Shivani M, Murugesan S, Chandra Sekhar KVG. Oxindole and its derivatives: a review on recent progress in biological activities. Biomed Pharmacother. (2021) 141:111842. 10.1016/j.biopha.2021.111842 PubMed DOI

Moraes RC, Carvalho AR, Lana AJD, Kaiser S, Pippi B, Fuentefria AM, et al. . In vitro synergism of a water insoluble fraction of Uncaria tomentosa combined with fluconazole and terbinafine against resistant non-candida albicans isolates. Pharm Biol. (2017) 55:406–15. 10.1080/13880209.2016.1242631 PubMed DOI PMC

Cui XD, Zhang JK, Sun YW, Yan, Bin F, Zhao JF, et al. . Synergistic antibacterial activity of baicalin and EDTA in combination with colistin against colistin-resistant salmonella. Poult Sci. (2023) 102:102346. 10.1016/j.psj.2022.102346 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...