CoPPIs algorithm: a tool to unravel protein cooperative strategies in pathophysiological conditions
Language English Country Great Britain, England Media print
Document type Journal Article
Grant support
2022Z2TE5P
PRIN2022
P2022LY3F4
PRIN PNRR
PubMed
40194557
PubMed Central
PMC11975363
DOI
10.1093/bib/bbaf146
PII: 8107851
Knihovny.cz E-resources
- Keywords
- PPI network, Parkinson, co-expression network, proteomics, topology,
- MeSH
- Algorithms * MeSH
- Glucosylceramidase genetics metabolism MeSH
- Humans MeSH
- Protein Interaction Mapping * methods MeSH
- Protein Interaction Maps MeSH
- Brain metabolism MeSH
- Parkinson Disease * metabolism genetics physiopathology MeSH
- Proteomics methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Glucosylceramidase MeSH
We present here the co-expressed protein-protein interactions algorithm. In addition to minimizing correlation-causality imbalance and contextualizing protein-protein interactions to the investigated systems, it combines protein-protein interactions and protein co-expression networks to identify differentially correlated functional modules. To test the algorithm, we processed a set of proteomic profiles from different brain regions of controls and subjects affected by idiopathic Parkinson's disease or carrying a GBA1 mutation. Its robustness was supported by the extraction of functional modules, related to translation and mitochondria, whose involvement in Parkinson's disease pathogenesis is well documented. Furthermore, the selection of hubs and bottlenecks from the weightedprotein-protein interactions networks provided molecular clues consistent with the Parkinson pathophysiology. Of note, like quantification, the algorithm revealed less variations when comparing disease groups than when comparing diseased and controls. However, correlation and quantification results showed low overlap, suggesting the complementarity of these measures. An observation that opens the way to a new investigation strategy that takes into account not only protein expression, but also the level of coordination among proteins that cooperate to perform a given function.
Division of Neuroscience IRCCS San Raffaele Scientific Institute Olgettina 60 20132 Milan Italy
Institute of Microbiology Czech Academy of Sciences Vídeňská 1083 14200 Praha 4 Czech Republic
See more in PubMed
Joshi A, Rienks M, Theofilatos K. et al. . Systems biology in cardiovascular disease: a multiomics approach. Nat Rev Cardiol 2020;18:313–30. 10.1038/s41569-020-00477-1 PubMed DOI
Suzuki Y, Kadomatsu K, Sakamoto K. Towards the in vivo identification of protein-protein interactions. J Biochem 2023;173:413–5. 10.1093/jb/mvad013 PubMed DOI
Kewalramani N, Emili A, Crovella M. State-of-the-art computational methods to predict protein-protein interactions with high accuracy and coverage. Proteomics 2023;23:e2200292. 10.1002/pmic.202200292 PubMed DOI
Vella D, Zoppis I, Mauri G. et al. . From protein-protein interactions to protein co-expression networks: a new perspective to evaluate large-scale proteomic data. EURASIP J Bioinform Syst Biol 2017;6. 10.1186/s13637-017-0059-z PubMed DOI PMC
Di Silvestre D, Brambilla F, Lavatelli F. et al. . The protein network in subcutaneous fat biopsies from patients with AL amyloidosis: more than diagnosis? Cells 2023;12:699. 10.3390/cells12050699 PubMed DOI PMC
Arfin S, Kumar D, Lomagno A. et al. . Differentially expressed genes, miRNAs and network models: a strategy to shed light on molecular interactions driving HNSCC tumorigenesis. Cancer 2023;15:4420. 10.3390/cancers15174420 PubMed DOI PMC
Albert R, Barabśsi AL. Statistical mechanics of complex networks. Rev Mod Phys 2002;74:47–97.
Rotival M, Petretto E. Leveraging gene co-expression networks to pinpoint the regulation of complex traits and disease, with a focus on cardiovascular traits. Brief Funct Genomics 2013;13:66–78. 10.1093/bfgp/elt030 PubMed DOI
Li M, Zhang J, Zhang Z. et al. . Identification of transcriptional pattern related to immune cell infiltration with gene co-expression network in papillary thyroid cancer. Front Endocrinol 2022;13:721569. 10.3389/fendo.2022.721569 PubMed DOI PMC
Walker CK, Greathouse KM, Tuscher JJ. et al. . Cross-platform synaptic network analysis of human entorhinal cortex identifies TWF2 as a modulator of dendritic spine length. J Neurosci 2023;43:3764–85. 10.1523/JNEUROSCI.2102-22.2023 PubMed DOI PMC
Zhang SQ, Pan SM, Lai SZ. et al. . Novel plasma proteomic biomarkers for early identification of induction chemotherapy beneficiaries in locoregionally advanced nasopharyngeal carcinoma. Front Oncol 2022;12:889516. 10.3389/fonc.2022.889516 PubMed DOI PMC
Johnson ECB, Carter EK, Dammer EB. et al. . Large-scale deep multi-layer analysis of Alzheimer’s disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nat Neurosci 2022;25:213–25. 10.1038/s41593-021-00999-y PubMed DOI PMC
Shi L, Winchester LM, Westwood S. et al. . Replication study of plasma proteins relating to Alzheimer’s pathology. Alzheimers Dement 2021;17:1452–64. 10.1002/alz.12322 PubMed DOI
Sebastiani P, Federico A, Morris M. et al. . Protein signatures of centenarians and their offspring suggest centenarians age slower than other humans. Aging Cell 2021;20:e13290. 10.1111/acel.13290 PubMed DOI PMC
Meier F, Geyer PE, Virreira Winter S. et al. . BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nat Methods 2018;15:440–8. 10.1038/s41592-018-0003-5 PubMed DOI
Deutsch EW, Bandeira N, Sharma V. et al. . The ProteomeXchange consortium in 2020: enabling ’big data’ approaches in proteomics. Nucleic Acids Res 2020;48:D1145–52. 10.1093/nar/gkz984 PubMed DOI PMC
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 2008;9:559. 10.1186/1471-2105-9-559 PubMed DOI PMC
Vanderwall D, Suresh P, Fu Y. et al. . JUMPn: a streamlined application for protein co-expression clustering and network analysis in proteomics. J Vis Exp 2021;176:e62796. 10.3791/62796-v PubMed DOI PMC
Minadakis G, Sokratous K, Spyrou GM. ProtExA: a tool for post-processing proteomics data providing differential expression metrics, co-expression networks and functional analytics. Comput Struct Biotechnol J 2020;18:1695–703. 10.1016/j.csbj.2020.06.036 PubMed DOI PMC
Buljan M, Banaei-Esfahani A, Blattmann P. et al. . A computational framework for the inference of protein complex remodeling from whole-proteome measurements. Nat Methods 2023;20:1523–9. 10.1038/s41592-023-02011-w PubMed DOI PMC
An G. Closing the scientific loop: Bridging correlation and causality in the petaflop age. Sci Transl Med 2010;2:41ps34–41ps34. 10.1126/scitranslmed.3000390 PubMed DOI
Cavagna A, Cimarelli A, Giardina I. et al. . Scale-free correlations in starling flocks. Proc Natl Acad Sci USA 2010;107:11865–70. 10.1073/pnas.1005766107 PubMed DOI PMC
Holland DO, Johnson ME. Stoichiometric balance of protein copy numbers is measurable and functionally significant in a protein-protein interaction network for yeast endocytosis. PLoS Comput Biol 2018;14:e1006022. 10.1371/journal.pcbi.1006022 PubMed DOI PMC
Blumenreich S, Nehushtan T, Kupervaser M. et al. . Large-scale proteomics analysis of five brain regions from Parkinson’s disease patients with a GBA1 mutation. npj Parkinson’s Disease 2024;10:33. 10.1038/s41531-024-00645-x PubMed DOI PMC
Federico A, Monti S. Contextualized protein-protein interactions. Patterns 2021;2:100153. 10.1016/j.patter.2020.100153 PubMed DOI PMC
Tsitsiridis G, Steinkamp R, Giurgiu M. et al. . CORUM: The comprehensive resource of mammalian protein complexes-2022. Nucleic Acids Res 2022;51:D539–45. 10.1093/nar/gkac1015 PubMed DOI PMC
Trist BG, Hare DJ, Double KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell 2019;18:e13031. 10.1111/acel.13031 PubMed DOI PMC
Ishikawa K. Multilayered regulation of proteome stoichiometry. Curr Genet 2021;67:883–90. 10.1007/s00294-021-01205-z PubMed DOI PMC
Henrich MT, Oertel WH, Surmeier DJ. et al. . Mitochondrial dysfunction in Parkinson’s disease - a key disease hallmark with therapeutic potential. Mol Neurodegener 2023;18:83. 10.1186/s13024-023-00676-7 PubMed DOI PMC
Ali MZ, Dholaniya PS. Oxidative phosphorylation mediated pathogenesis of Parkinson’s disease and its implication via Akt signaling. Neurochem Int 2022;157:105344. PubMed
O’Gorman, Tuura RL, Baumann CR, Baumann-Vogel H. Beyond dopamine: GABA, glutamate, and the axial symptoms of Parkinson disease. Front Neurol 2018;9:806. 10.3389/fneur.2018.00806 PubMed DOI PMC
Jang Y, Pletnikova O, Troncoso JC. et al. . Mass spectrometry-based proteomics analysis of human substantia Nigra from Parkinson’s disease patients identifies multiple pathways potentially involved in the disease. Mol Cell Proteomics 2023; 22:100452. 10.1016/j.mcpro.2022.100452 PubMed DOI PMC
Wulf M, Barkovits K, Schork K. et al. . Neuromelanin granules of the substantia nigra: proteomic profile provides links to tyrosine hydroxylase, stress granules and lysosomes. J Neural Transm 2022;129:1257–70. 10.1007/s00702-022-02530-4 PubMed DOI PMC
Flønes IH, Toker L, Sandnes DA. et al. . Mitochondrial complex I deficiency stratifies idiopathic Parkinson’s disease. Nat Commun 2024;15:3631. 10.1038/s41467-024-47867-4 PubMed DOI PMC
Haque ME, Akther M, Azam S. et al. . GPR4 knockout improves the neurotoxin-induced, caspase-dependent mitochondrial apoptosis of the dopaminergic neuronal cell. Int J Mol Sci 2020;21:7517. PubMed PMC
Reeve AK, Grady JP, Cosgrave EM. et al. . Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson’s disease. npj Parkinson’s Disease 2018;4:9. 10.1038/s41531-018-0044-6 PubMed DOI PMC
Takano M, Tashiro E, Kitamura A. et al. . Prefoldin prevents aggregation of synuclein. Brain Res 2014;1542:186–94. 10.1016/j.brainres.2013.10.034 PubMed DOI
Skrahin A, Horowitz M, Istaiti M. et al. . GBA1-associated Parkinson’s disease is a distinct entity. Int J Mol Sci 2024;25:7102. PubMed PMC
Faynveitz A, Lavian H, Jacob A. et al. . Proliferation of inhibitory input to the substantia nigra in experimental parkinsonism. Front Cell Neurosci 2019;13:417. 10.3389/fncel.2019.00417 PubMed DOI PMC
Huang L, Ren Y, Zeng Z. et al. . Comparative study of striatum GABA concentrations and magnetic resonance spectroscopic imaging in Parkinson’s disease monkeys. BMC Neurosci 2019;20:42. 10.1186/s12868-019-0522-8 PubMed DOI PMC
Smith Y, Villalba RM, Raju DV. Striatal spine plasticity in Parkinson’s disease: pathological or not? Parkinsonism Relat Disord 2009;15:S156–61. 10.1016/S1353-8020(09)70805-3 PubMed DOI PMC
Vos M, Lauwers E, Verstreken P. Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease. Front Synap Neurosci 2010;2:139. 10.3389/fnsyn.2010.00139 PubMed DOI PMC
Mitchell IJ, Lawson S, Moser B. et al. . Glutamate-induced apoptosis results in a loss of striatal neurons in the parkinsonian rat. Neuroscience 1994;63:1–5. PubMed
Zhu XH, Lee BY, Tuite P. et al. . Quantitative assessment of occipital metabolic and energetic changes in Parkinson’s patients, using in vivo 31P MRS-based metabolic imaging at 7T. Metabolites 2021;11:145. 10.3390/metabo11030145 PubMed DOI PMC
Firbank MJ, Parikh J, Murphy N. et al. . Reduced occipital GABA in Parkinson disease with visual hallucinations. Neurology 2018;91:e675-e685. 10.1212/WNL.0000000000006007 PubMed DOI PMC
Dai C, Tan C, Zhao L. et al. . Glucose metabolism impairment in Parkinson’s disease. Brain Res Bull 2023;199:110672. 10.1016/j.brainresbull.2023.110672 PubMed DOI
Tard C, Demailly F, Delval A. et al. . Hypometabolism in posterior and temporal areas of the brain is associated with cognitive decline in Parkinson’s disease. J Parkinsons Dis 2015;5:569–74. 10.3233/JPD-150583 PubMed DOI
Dienel GA. Brain glucose metabolism: integration of energetics with function. Physiol Rev 2019;99:949–1045. 10.1152/physrev.00062.2017 PubMed DOI
Lee YM, He W, Liou YC. The redox language in neurodegenerative diseases: oxidative post-translational modifications by hydrogen peroxide. Cell Death Dis 2021;12:58. 10.1038/s41419-020-03355-3 PubMed DOI PMC
Faienza F, Rizza S, Giglio P. et al. . TRAP1: a metabolic hub linking aging pathophysiology to mitochondrial S-nitrosylation. Front Physiol 2020;11:340. 10.3389/fphys.2020.00340 PubMed DOI PMC
Lee SH, Chung KC. USP7 attenuates endoplasmic reticulum stress-induced apoptotic cell death through deubiquitination and stabilization of FBXO7. PloS One 2023;18:e0290371. 10.1371/journal.pone.0290371 PubMed DOI PMC
Lee BE, Kim HY, Kim HJ. et al. . O-GlcNAcylation regulates dopamine neuron function, survival and degeneration in Parkinson disease. Brain 2020;143:3699–716. 10.1093/brain/awaa320 PubMed DOI PMC
Del Giudice L, Pontieri P, Aletta M. et al. . Mitochondrial neurodegenerative diseases: three mitochondrial ribosomal proteins as intermediate stage in the pathway that associates damaged genes with Alzheimer’s and Parkinson’s. Biology 2023;12:972. 10.3390/biology12070972 PubMed DOI PMC
Kim AY, Baik EJ. Glutamate dehydrogenase as a neuroprotective target against neurodegeneration. Neurochem Res 2018;44:147–53. 10.1007/s11064-018-2467-1 PubMed DOI
Chen L, Wang Y, Huang J. et al. . Identification of immune-related hub genes in Parkinson’s disease. Front Genet 2022;13:914645. 10.3389/fgene.2022.914645 PubMed DOI PMC
Li D, Zou S, Huang Z. et al. . Isolation and quantification of L1CAM-positive extracellular vesicles on a chip as a potential biomarker for Parkinson’s disease. J Extracell Vesicles 2024;13:e12467. 10.1002/jev2.12467 PubMed DOI PMC
Saini P, Rudakou U, Yu E. et al. . Association study of DNAJC13, UCHL1, HTRA2, GIGYF2, and EIF4G1 with Parkinson’s disease. Neurobiol Aging 2021;100:119.e7–119.e13. 10.1016/j.neurobiolaging.2020.10.019 PubMed DOI PMC
Buneeva O, Medvedev A. Ubiquitin carboxyl-terminal hydrolase L1 and its role in Parkinson’s disease. Int J Mol Sci 2024;25:1303. 10.3390/ijms25021303 PubMed DOI PMC
Fathi E, Yarbro JM, Homayouni R. NIPSNAP protein family emerges as a sensor of mitochondrial health. Bioessays 2021;43:2100014. 10.1002/bies.202100014. PubMed DOI PMC
Kim K, Kim SH, Kim J. et al. . Glutathione S-transferase omega 1 activity is sufficient to suppress neurodegeneration in a Drosophila model of Parkinson disease. J Biol Chem 2012;287:6628–41. 10.1074/jbc.M111.291179 PubMed DOI PMC
Gharibyan AL, Wasana Jayaweera S, Lehmann M. et al. . Endogenous human proteins interfering with amyloid formation. Biomolecules 2022;12:446. PubMed PMC
Whiten DR, Cox D, Horrocks MH. et al. . Single-molecule characterization of the interactions between extracellular chaperones and toxic synuclein oligomers. Cell Rep 2018;23:3492–500. 10.1016/j.celrep.2018.05.074 PubMed DOI PMC
Yemni EA, Monies D, Alkhairallah T. et al. . Integrated analysis of whole exome sequencing and copy number evaluation in Parkinson’s disease. Sci Rep 2019;9:3344. 10.1038/s41598-019-40102-x PubMed DOI PMC
Wang H, Sun C, Liang Y. et al. . Identification of regulatory relationships in Parkinson’s disease. J Mol Neurosci 2013;51:9–12. 10.1007/s12031-012-9937-8 PubMed DOI
Deng H, Wu Y, Jankovic J. TheEIF4G1gene and Parkinson’s disease. Acta Neurol Scand 2015;132:73–8. 10.1111/ane.12397 PubMed DOI
Chartier-Harlin MC, Dachsel J, Vilariño-Güell C. et al. . Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet 2011;89:398–406. 10.1016/j.ajhg.2011.08.009 PubMed DOI PMC
Harrer P, Škorvánek M, Kittke V. et al. . Dystonia linked to EIF4A2 haploinsufficiency: a disorder of protein translation dysfunction. Mov Disord 2023;38:1914–24. 10.1002/mds.29562 PubMed DOI
Ma S, Attarwala IY, Xie XQ. SQSTM1/p62: a potential target for neurodegenerative disease. ACS Chem Nerosci 2019;10:2094–114. 10.1021/acschemneuro.8b00516 PubMed DOI PMC
Kim MJ, Jeon S, Burbulla LF. et al. . Acid ceramidase inhibition ameliorates synuclein accumulation upon loss of GBA1 function. Hum Mol Genet 2018;27:1972–88. 10.1093/hmg/ddy105 PubMed DOI PMC
Rahmani Z, Surabhi S, Rojo-Cortés F. et al. . Lamp1 deficiency enhances sensitivity to synuclein and oxidative stress in Drosophila models of Parkinson disease. Int J Mol Sci 2022;23: 13078. 10.3390/ijms232113078 PubMed DOI PMC
Nguyen M, Wong YC, Ysselstein D. et al. . Synaptic, mitochondrial, and lysosomal dysfunction in Parkinson’s disease. Trends Neurosci 2019;42:140–9. 10.1016/j.tins.2018.11.001 PubMed DOI PMC
De la Casa-Fages B, Fernśndez-Eulate G, Gamez J. et al. . Parkinsonism and spastic paraplegia type 7: expanding the spectrum of mitochondrial parkinsonism. Mov Disord 2019;34:1547–61. 10.1002/mds.27812 PubMed DOI
Szklarczyk D, Kirsch R, Koutrouli M. et al. . The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 2022;51:D638–46. 10.1093/nar/gkac1000 PubMed DOI PMC
Gräßler J, Koschützki D, Schreiber F. CentiLib: comprehensive analysis and exploration of network centralities. Bioinformatics 2012;28:1178–9. 10.1093/bioinformatics/bts106 PubMed DOI
Ramanathan M, Zhang A, Cho YR. et al. . Bridging Centrality: Identifying Bridging Nodes in Scale-Free Networks. KDD '06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. New York, NY, (USA): Association for Computing Machinery, 2006. https://api.semanticscholar.org/CorpusID:2706470.
Tosadori G, Bestvina I, Spoto F. et al. . Creating, generating and comparing random network models with NetworkRandomizer. F1000Research 2017;5:2524. PubMed PMC
Plum S, Eggers B, Helling S. et al. . Proteomic characterization of synaptosomes from human substantia nigra indicates altered mitochondrial translation in Parkinson’s disease. Cells 2020;9:2580. 10.3390/cells9122580 PubMed DOI PMC
Petyuk VA, Yu L, Olson HM. et al. . Proteomic profiling of the substantia nigra to identify determinants of Lewy body pathology and dopaminergic neuronal loss. J Proteome Res 2021;20:2266–82. 10.1021/acs.jproteome.0c00747 PubMed DOI PMC
Eisen MB, Spellman PT, Brown PO. et al. . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 1998;95:14863–8. 10.1073/pnas.95.25.14863 PubMed DOI PMC
Su L, Liu G, Guo Y. et al. . Integration of protein-protein interaction networks and gene expression profiles helps detect pancreatic adenocarcinoma candidate genes. Front Genet 2022;13:854661. 10.3389/fgene.2022.854661 PubMed DOI PMC
Fraenkel JR, Norman HHRP, Wallen E. How to Design and Evaluate Research in Education. New York, NY, (USA): McGraw-Hill Humanities/Social Sciences/Languages, 2011.
Invergo B, Beltrao P. Reconstructing phosphorylation signalling networks from quantitative phosphoproteomic data. Essays Biochem 2018;62:525–34. 10.1042/EBC20180019 PubMed DOI PMC