CoPPIs algorithm: a tool to unravel protein cooperative strategies in pathophysiological conditions

. 2025 Mar 04 ; 26 (2) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40194557

Grantová podpora
2022Z2TE5P PRIN2022
P2022LY3F4 PRIN PNRR

We present here the co-expressed protein-protein interactions algorithm. In addition to minimizing correlation-causality imbalance and contextualizing protein-protein interactions to the investigated systems, it combines protein-protein interactions and protein co-expression networks to identify differentially correlated functional modules. To test the algorithm, we processed a set of proteomic profiles from different brain regions of controls and subjects affected by idiopathic Parkinson's disease or carrying a GBA1 mutation. Its robustness was supported by the extraction of functional modules, related to translation and mitochondria, whose involvement in Parkinson's disease pathogenesis is well documented. Furthermore, the selection of hubs and bottlenecks from the weightedprotein-protein interactions networks provided molecular clues consistent with the Parkinson pathophysiology. Of note, like quantification, the algorithm revealed less variations when comparing disease groups than when comparing diseased and controls. However, correlation and quantification results showed low overlap, suggesting the complementarity of these measures. An observation that opens the way to a new investigation strategy that takes into account not only protein expression, but also the level of coordination among proteins that cooperate to perform a given function.

Zobrazit více v PubMed

Joshi  A, Rienks  M, Theofilatos  K. et al. .  Systems biology in cardiovascular disease: a multiomics approach. Nat Rev Cardiol  2020;18:313–30. 10.1038/s41569-020-00477-1 PubMed DOI

Suzuki  Y, Kadomatsu  K, Sakamoto  K. Towards the in vivo identification of protein-protein interactions. J Biochem  2023;173:413–5. 10.1093/jb/mvad013 PubMed DOI

Kewalramani  N, Emili  A, Crovella  M. State-of-the-art computational methods to predict protein-protein interactions with high accuracy and coverage. Proteomics  2023;23:e2200292. 10.1002/pmic.202200292 PubMed DOI

Vella  D, Zoppis  I, Mauri  G. et al. .  From protein-protein interactions to protein co-expression networks: a new perspective to evaluate large-scale proteomic data. EURASIP J Bioinform Syst Biol  2017;6. 10.1186/s13637-017-0059-z PubMed DOI PMC

Di Silvestre  D, Brambilla  F, Lavatelli  F. et al. .  The protein network in subcutaneous fat biopsies from patients with AL amyloidosis: more than diagnosis?  Cells  2023;12:699. 10.3390/cells12050699 PubMed DOI PMC

Arfin  S, Kumar  D, Lomagno  A. et al. .  Differentially expressed genes, miRNAs and network models: a strategy to shed light on molecular interactions driving HNSCC tumorigenesis. Cancer  2023;15:4420. 10.3390/cancers15174420 PubMed DOI PMC

Albert  R, Barabśsi  AL. Statistical mechanics of complex networks. Rev Mod Phys  2002;74:47–97.

Rotival  M, Petretto  E. Leveraging gene co-expression networks to pinpoint the regulation of complex traits and disease, with a focus on cardiovascular traits. Brief Funct Genomics  2013;13:66–78. 10.1093/bfgp/elt030 PubMed DOI

Li  M, Zhang  J, Zhang  Z. et al. .  Identification of transcriptional pattern related to immune cell infiltration with gene co-expression network in papillary thyroid cancer. Front Endocrinol  2022;13:721569. 10.3389/fendo.2022.721569 PubMed DOI PMC

Walker  CK, Greathouse  KM, Tuscher  JJ. et al. .  Cross-platform synaptic network analysis of human entorhinal cortex identifies TWF2 as a modulator of dendritic spine length. J Neurosci  2023;43:3764–85. 10.1523/JNEUROSCI.2102-22.2023 PubMed DOI PMC

Zhang  SQ, Pan  SM, Lai  SZ. et al. .  Novel plasma proteomic biomarkers for early identification of induction chemotherapy beneficiaries in locoregionally advanced nasopharyngeal carcinoma. Front Oncol  2022;12:889516. 10.3389/fonc.2022.889516 PubMed DOI PMC

Johnson  ECB, Carter  EK, Dammer  EB. et al. .  Large-scale deep multi-layer analysis of Alzheimer’s disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nat Neurosci  2022;25:213–25. 10.1038/s41593-021-00999-y PubMed DOI PMC

Shi  L, Winchester  LM, Westwood  S. et al. .  Replication study of plasma proteins relating to Alzheimer’s pathology. Alzheimers Dement  2021;17:1452–64. 10.1002/alz.12322 PubMed DOI

Sebastiani  P, Federico  A, Morris  M. et al. .  Protein signatures of centenarians and their offspring suggest centenarians age slower than other humans. Aging Cell  2021;20:e13290. 10.1111/acel.13290 PubMed DOI PMC

Meier  F, Geyer  PE, Virreira Winter  S. et al. .  BoxCar acquisition method enables single-shot proteomics at a depth of 10,000 proteins in 100 minutes. Nat Methods  2018;15:440–8. 10.1038/s41592-018-0003-5 PubMed DOI

Deutsch  EW, Bandeira  N, Sharma  V. et al. .  The ProteomeXchange consortium in 2020: enabling ’big data’ approaches in proteomics. Nucleic Acids Res  2020;48:D1145–52. 10.1093/nar/gkz984 PubMed DOI PMC

Langfelder  P, Horvath  S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform  2008;9:559. 10.1186/1471-2105-9-559 PubMed DOI PMC

Vanderwall  D, Suresh  P, Fu  Y. et al. .  JUMPn: a streamlined application for protein co-expression clustering and network analysis in proteomics. J Vis Exp  2021;176:e62796. 10.3791/62796-v PubMed DOI PMC

Minadakis  G, Sokratous  K, Spyrou  GM. ProtExA: a tool for post-processing proteomics data providing differential expression metrics, co-expression networks and functional analytics. Comput Struct Biotechnol J  2020;18:1695–703. 10.1016/j.csbj.2020.06.036 PubMed DOI PMC

Buljan  M, Banaei-Esfahani  A, Blattmann  P. et al. .  A computational framework for the inference of protein complex remodeling from whole-proteome measurements. Nat Methods  2023;20:1523–9. 10.1038/s41592-023-02011-w PubMed DOI PMC

An  G. Closing the scientific loop: Bridging correlation and causality in the petaflop age. Sci Transl Med  2010;2:41ps34–41ps34. 10.1126/scitranslmed.3000390 PubMed DOI

Cavagna  A, Cimarelli  A, Giardina  I. et al. .  Scale-free correlations in starling flocks. Proc Natl Acad Sci USA  2010;107:11865–70. 10.1073/pnas.1005766107 PubMed DOI PMC

Holland  DO, Johnson  ME. Stoichiometric balance of protein copy numbers is measurable and functionally significant in a protein-protein interaction network for yeast endocytosis. PLoS Comput Biol  2018;14:e1006022. 10.1371/journal.pcbi.1006022 PubMed DOI PMC

Blumenreich  S, Nehushtan  T, Kupervaser  M. et al. .  Large-scale proteomics analysis of five brain regions from Parkinson’s disease patients with a GBA1 mutation. npj Parkinson’s Disease  2024;10:33. 10.1038/s41531-024-00645-x PubMed DOI PMC

Federico  A, Monti  S. Contextualized protein-protein interactions. Patterns  2021;2:100153. 10.1016/j.patter.2020.100153 PubMed DOI PMC

Tsitsiridis  G, Steinkamp  R, Giurgiu  M. et al. .  CORUM: The comprehensive resource of mammalian protein complexes-2022. Nucleic Acids Res  2022;51:D539–45. 10.1093/nar/gkac1015 PubMed DOI PMC

Trist  BG, Hare  DJ, Double  KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell  2019;18:e13031. 10.1111/acel.13031 PubMed DOI PMC

Ishikawa  K. Multilayered regulation of proteome stoichiometry. Curr Genet  2021;67:883–90. 10.1007/s00294-021-01205-z PubMed DOI PMC

Henrich  MT, Oertel  WH, Surmeier  DJ. et al. .  Mitochondrial dysfunction in Parkinson’s disease - a key disease hallmark with therapeutic potential. Mol Neurodegener  2023;18:83. 10.1186/s13024-023-00676-7 PubMed DOI PMC

Ali  MZ, Dholaniya  PS. Oxidative phosphorylation mediated pathogenesis of Parkinson’s disease and its implication via Akt signaling. Neurochem Int  2022;157:105344. PubMed

O’Gorman, Tuura  RL, Baumann  CR, Baumann-Vogel  H. Beyond dopamine: GABA, glutamate, and the axial symptoms of Parkinson disease. Front Neurol  2018;9:806. 10.3389/fneur.2018.00806 PubMed DOI PMC

Jang  Y, Pletnikova  O, Troncoso  JC. et al. .  Mass spectrometry-based proteomics analysis of human substantia Nigra from Parkinson’s disease patients identifies multiple pathways potentially involved in the disease. Mol Cell Proteomics  2023; 22:100452. 10.1016/j.mcpro.2022.100452 PubMed DOI PMC

Wulf  M, Barkovits  K, Schork  K. et al. .  Neuromelanin granules of the substantia nigra: proteomic profile provides links to tyrosine hydroxylase, stress granules and lysosomes. J Neural Transm  2022;129:1257–70. 10.1007/s00702-022-02530-4 PubMed DOI PMC

Flønes  IH, Toker  L, Sandnes  DA. et al. .  Mitochondrial complex I deficiency stratifies idiopathic Parkinson’s disease. Nat  Commun  2024;15:3631. 10.1038/s41467-024-47867-4 PubMed DOI PMC

Haque  ME, Akther  M, Azam  S. et al. .  GPR4 knockout improves the neurotoxin-induced, caspase-dependent mitochondrial apoptosis of the dopaminergic neuronal cell. Int J Mol Sci  2020;21:7517. PubMed PMC

Reeve  AK, Grady  JP, Cosgrave  EM. et al. .  Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson’s disease. npj Parkinson’s Disease  2018;4:9. 10.1038/s41531-018-0044-6 PubMed DOI PMC

Takano  M, Tashiro  E, Kitamura  A. et al. .  Prefoldin prevents aggregation of synuclein. Brain Res  2014;1542:186–94. 10.1016/j.brainres.2013.10.034 PubMed DOI

Skrahin  A, Horowitz  M, Istaiti  M. et al. .  GBA1-associated Parkinson’s disease is a distinct entity. Int J Mol Sci  2024;25:7102. PubMed PMC

Faynveitz  A, Lavian  H, Jacob  A. et al. .  Proliferation of inhibitory input to the substantia nigra in experimental parkinsonism. Front Cell Neurosci  2019;13:417. 10.3389/fncel.2019.00417 PubMed DOI PMC

Huang  L, Ren  Y, Zeng  Z. et al. .  Comparative study of striatum GABA concentrations and magnetic resonance spectroscopic imaging in Parkinson’s disease monkeys. BMC Neurosci  2019;20:42. 10.1186/s12868-019-0522-8 PubMed DOI PMC

Smith  Y, Villalba  RM, Raju  DV. Striatal spine plasticity in Parkinson’s disease: pathological or not?  Parkinsonism Relat Disord  2009;15:S156–61. 10.1016/S1353-8020(09)70805-3 PubMed DOI PMC

Vos  M, Lauwers  E, Verstreken  P. Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease. Front Synap  Neurosci  2010;2:139. 10.3389/fnsyn.2010.00139 PubMed DOI PMC

Mitchell  IJ, Lawson  S, Moser  B. et al. .  Glutamate-induced apoptosis results in a loss of striatal neurons in the parkinsonian rat. Neuroscience  1994;63:1–5. PubMed

Zhu  XH, Lee  BY, Tuite  P. et al. .  Quantitative assessment of occipital metabolic and energetic changes in Parkinson’s patients, using in vivo 31P MRS-based metabolic imaging at 7T. Metabolites  2021;11:145. 10.3390/metabo11030145 PubMed DOI PMC

Firbank  MJ, Parikh  J, Murphy  N. et al. .  Reduced occipital GABA in Parkinson disease with visual hallucinations. Neurology  2018;91:e675-e685. 10.1212/WNL.0000000000006007 PubMed DOI PMC

Dai  C, Tan  C, Zhao  L. et al. .  Glucose metabolism impairment in Parkinson’s disease. Brain Res Bull  2023;199:110672. 10.1016/j.brainresbull.2023.110672 PubMed DOI

Tard  C, Demailly  F, Delval  A. et al. .  Hypometabolism in posterior and temporal areas of the brain is associated with cognitive decline in Parkinson’s disease. J Parkinsons Dis  2015;5:569–74. 10.3233/JPD-150583 PubMed DOI

Dienel  GA. Brain glucose metabolism: integration of energetics with function. Physiol Rev  2019;99:949–1045. 10.1152/physrev.00062.2017 PubMed DOI

Lee  YM, He  W, Liou  YC. The redox language in neurodegenerative diseases: oxidative post-translational modifications by hydrogen peroxide. Cell Death Dis  2021;12:58. 10.1038/s41419-020-03355-3 PubMed DOI PMC

Faienza  F, Rizza  S, Giglio  P. et al. .  TRAP1: a metabolic hub linking aging pathophysiology to mitochondrial S-nitrosylation. Front Physiol  2020;11:340. 10.3389/fphys.2020.00340 PubMed DOI PMC

Lee  SH, Chung  KC. USP7 attenuates endoplasmic reticulum stress-induced apoptotic cell death through deubiquitination and stabilization of FBXO7. PloS One  2023;18:e0290371. 10.1371/journal.pone.0290371 PubMed DOI PMC

Lee  BE, Kim  HY, Kim  HJ. et al. .  O-GlcNAcylation regulates dopamine neuron function, survival and degeneration in Parkinson disease. Brain  2020;143:3699–716. 10.1093/brain/awaa320 PubMed DOI PMC

Del Giudice  L, Pontieri  P, Aletta  M. et al. .  Mitochondrial neurodegenerative diseases: three mitochondrial ribosomal proteins as intermediate stage in the pathway that associates damaged genes with Alzheimer’s and Parkinson’s. Biology  2023;12:972. 10.3390/biology12070972 PubMed DOI PMC

Kim  AY, Baik  EJ. Glutamate dehydrogenase as a neuroprotective target against neurodegeneration. Neurochem Res  2018;44:147–53. 10.1007/s11064-018-2467-1 PubMed DOI

Chen  L, Wang  Y, Huang  J. et al. .  Identification of immune-related hub genes in Parkinson’s disease. Front Genet  2022;13:914645. 10.3389/fgene.2022.914645 PubMed DOI PMC

Li  D, Zou  S, Huang  Z. et al. .  Isolation and quantification of L1CAM-positive extracellular vesicles on a chip as a potential biomarker for Parkinson’s disease. J Extracell Vesicles  2024;13:e12467. 10.1002/jev2.12467 PubMed DOI PMC

Saini  P, Rudakou  U, Yu  E. et al. .  Association study of DNAJC13, UCHL1, HTRA2, GIGYF2, and EIF4G1 with Parkinson’s disease. Neurobiol Aging  2021;100:119.e7–119.e13. 10.1016/j.neurobiolaging.2020.10.019 PubMed DOI PMC

Buneeva  O, Medvedev  A. Ubiquitin carboxyl-terminal hydrolase L1 and its role in Parkinson’s disease. Int J Mol Sci  2024;25:1303. 10.3390/ijms25021303 PubMed DOI PMC

Fathi  E, Yarbro  JM, Homayouni  R. NIPSNAP protein family emerges as a sensor of mitochondrial health. Bioessays  2021;43:2100014. 10.1002/bies.202100014. PubMed DOI PMC

Kim  K, Kim  SH, Kim  J. et al. .  Glutathione S-transferase omega 1 activity is sufficient to suppress neurodegeneration in a Drosophila model of Parkinson disease. J Biol Chem  2012;287:6628–41. 10.1074/jbc.M111.291179 PubMed DOI PMC

Gharibyan  AL, Wasana Jayaweera  S, Lehmann  M. et al. .  Endogenous human proteins interfering with amyloid formation. Biomolecules  2022;12:446. PubMed PMC

Whiten  DR, Cox  D, Horrocks  MH. et al. .  Single-molecule characterization of the interactions between extracellular chaperones and toxic synuclein oligomers. Cell Rep  2018;23:3492–500. 10.1016/j.celrep.2018.05.074 PubMed DOI PMC

Yemni  EA, Monies  D, Alkhairallah  T. et al. .  Integrated analysis of whole exome sequencing and copy number evaluation in Parkinson’s disease. Sci Rep  2019;9:3344. 10.1038/s41598-019-40102-x PubMed DOI PMC

Wang  H, Sun  C, Liang  Y. et al. .  Identification of regulatory relationships in Parkinson’s disease. J Mol Neurosci  2013;51:9–12. 10.1007/s12031-012-9937-8 PubMed DOI

Deng  H, Wu  Y, Jankovic  J. TheEIF4G1gene and Parkinson’s disease. Acta Neurol Scand  2015;132:73–8. 10.1111/ane.12397 PubMed DOI

Chartier-Harlin  MC, Dachsel  J, Vilariño-Güell  C. et al. .  Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet  2011;89:398–406. 10.1016/j.ajhg.2011.08.009 PubMed DOI PMC

Harrer  P, Škorvánek  M, Kittke  V. et al. .  Dystonia linked to EIF4A2 haploinsufficiency: a disorder of protein translation dysfunction. Mov Disord  2023;38:1914–24. 10.1002/mds.29562 PubMed DOI

Ma  S, Attarwala  IY, Xie  XQ. SQSTM1/p62: a potential target for neurodegenerative disease. ACS Chem Nerosci  2019;10:2094–114. 10.1021/acschemneuro.8b00516 PubMed DOI PMC

Kim  MJ, Jeon  S, Burbulla  LF. et al. .  Acid ceramidase inhibition ameliorates synuclein accumulation upon loss of GBA1 function. Hum Mol Genet  2018;27:1972–88. 10.1093/hmg/ddy105 PubMed DOI PMC

Rahmani  Z, Surabhi  S, Rojo-Cortés  F. et al. .  Lamp1 deficiency enhances sensitivity to synuclein and oxidative stress in Drosophila models of Parkinson disease. Int J Mol Sci  2022;23: 13078. 10.3390/ijms232113078 PubMed DOI PMC

Nguyen  M, Wong  YC, Ysselstein  D. et al. .  Synaptic, mitochondrial, and lysosomal dysfunction in Parkinson’s disease. Trends Neurosci  2019;42:140–9. 10.1016/j.tins.2018.11.001 PubMed DOI PMC

De la Casa-Fages  B, Fernśndez-Eulate  G, Gamez  J. et al. .  Parkinsonism and spastic paraplegia type 7: expanding the spectrum of mitochondrial parkinsonism. Mov Disord  2019;34:1547–61. 10.1002/mds.27812 PubMed DOI

Szklarczyk  D, Kirsch  R, Koutrouli  M. et al. .  The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res  2022;51:D638–46. 10.1093/nar/gkac1000 PubMed DOI PMC

Gräßler  J, Koschützki  D, Schreiber  F. CentiLib: comprehensive analysis and exploration of network centralities. Bioinformatics  2012;28:1178–9. 10.1093/bioinformatics/bts106 PubMed DOI

Ramanathan  M, Zhang  A, Cho  YR. et al. . Bridging Centrality: Identifying Bridging Nodes in Scale-Free Networks. KDD '06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining. New York, NY, (USA): Association for Computing Machinery, 2006. https://api.semanticscholar.org/CorpusID:2706470.

Tosadori  G, Bestvina  I, Spoto  F. et al. .  Creating, generating and comparing random network models with NetworkRandomizer. F1000Research  2017;5:2524. PubMed PMC

Plum  S, Eggers  B, Helling  S. et al. .  Proteomic characterization of synaptosomes from human substantia nigra indicates altered mitochondrial translation in Parkinson’s disease. Cells  2020;9:2580. 10.3390/cells9122580 PubMed DOI PMC

Petyuk  VA, Yu  L, Olson  HM. et al. .  Proteomic profiling of the substantia nigra to identify determinants of Lewy body pathology and dopaminergic neuronal loss. J Proteome Res  2021;20:2266–82. 10.1021/acs.jproteome.0c00747 PubMed DOI PMC

Eisen  MB, Spellman  PT, Brown  PO. et al. .  Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci  1998;95:14863–8. 10.1073/pnas.95.25.14863 PubMed DOI PMC

Su  L, Liu  G, Guo  Y. et al. .  Integration of protein-protein interaction networks and gene expression profiles helps detect pancreatic adenocarcinoma candidate genes. Front Genet  2022;13:854661. 10.3389/fgene.2022.854661 PubMed DOI PMC

Fraenkel  JR, Norman  HHRP, Wallen  E. How to Design and Evaluate Research in Education. New York, NY, (USA): McGraw-Hill Humanities/Social Sciences/Languages, 2011.

Invergo  B, Beltrao  P. Reconstructing phosphorylation signalling networks from quantitative phosphoproteomic data. Essays Biochem  2018;62:525–34. 10.1042/EBC20180019 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...