The Role of Two Tyrosinase-Like Glycoenzymes in Defining the Final Hue of Parrot Plumage
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
Israel Science Foundation
PubMed
40195888
PubMed Central
PMC11976374
DOI
10.1111/pcmr.70010
Knihovny.cz E-zdroje
- Klíčová slova
- TYR, TYRP1, eumelanin, feather, parrot,
- MeSH
- fenotyp MeSH
- lidé MeSH
- melaniny metabolismus MeSH
- oxidoreduktasy * metabolismus genetika MeSH
- papouškovití * genetika metabolismus MeSH
- peří * enzymologie metabolismus MeSH
- pigmentace * genetika MeSH
- ptačí proteiny * metabolismus genetika MeSH
- tyrosinasa * metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- melaniny MeSH
- oxidoreduktasy * MeSH
- ptačí proteiny * MeSH
- tyrosinasa * MeSH
- tyrosinase-related protein-1 MeSH Prohlížeč
Recent advances in avian melanogenesis have pinpointed multiple genetic loci associated with color polymorphisms, predominantly in the plumage of chickens, quails, and pigeons. However, the genetic basis of melaninization in parrot plumage remains elusive. Previously, we showed that mutations in the melanosomal ion-transporter SLC45A2 lead to a complete loss of blue structural color in green parrot feathers, leaving only yellow psittacofulvin. Yet, several color morphs involving partial or complete melanin reduction are common in captive-bred parrots that have not been studied. To bridge this gap, we investigated two new color morphs of parrot plumage: non-sex-linked recessive lutino (NSL), which entirely inhibits blue structural coloration, and the sex-linked recessive cinnamon, which reduces the intensity of blue structural coloration. Our genotypic analysis revealed that tyrosinase (TYR) variants are responsible for the NSL phenotype in Fischer's lovebird and green-cheeked parakeet, while tyrosinase related protein 1 (TYRP1) variants are associated with the cinnamon phenotype in the rose-ringed parakeet. When transfected into HEK293T cells, the candidate substitutions significantly affected tyrosinase enzymatic activity. This study underscores tyrosinase and related enzymes' role in parrot feather coloration, enhancing our understanding of avian melanogenesis as well as the conserved functions of melanogenic components across different species.
Department of Life Sciences Ben Gurion University of the Negev Beer Sheva Israel
Institute of Physics Faculty of Mathematics and Physics Charles University Prague Czech Republic
Zobrazit více v PubMed
Abolins‐Abols, M. , Kornobis E., Ribeca P., et al. 2018. “Differential Gene Regulation Underlies Variation in Melanic Plumage Coloration in the Dark‐Eyed Junco (Junco Hyemalis).” Molecular Ecology 27, no. 22: 4501–4515. 10.1111/mec.14878. PubMed DOI
Adzhubei, I. A. , Schmidt S., Peshkin L., et al. 2010. “A Method and Server for Predicting Damaging Missense Mutations.” Nature Methods 7, no. 4: 248–249. PubMed PMC
Arbore, R. , Barbosa S., Brejcha J., et al. 2024. “A Molecular Mechanism for Bright Color Variation in Parrots.” Science 386, no. 6721: eadp7710. 10.1126/science.adp7710. PubMed DOI PMC
Berryere, T. G. , Schmutz S. M., Schimpf R. J., Cowan C. M., and Potter J.. 2003. “TYRP1 Is Associated With Dun Coat Colour in Dexter Cattle or How Now Brown Cow?” Animal Genetics 34, no. 3: 169–175. 10.1046/j.1365-2052.2003.00985.x. PubMed DOI
Breimer, L. H. , Winder A. F., Jay B., and Jay M.. 1994. “Initiation Codon Mutation of the Tyrosinase Gene as a Cause of Human Albinism.” Clinica Chimica Acta 227, no. 1–2: 17–22. 10.1016/0009-8981(94)90131-7. PubMed DOI
Chang, C. M. , Coville J. L., Coquerelle G., Gourichon D., Oulmouden A., and Tixier‐Boichard M.. 2006. “Complete Association Between a Retroviral Insertion in the Tyrosinase Gene and the Recessive White Mutation in Chickens.” BMC Genomics 7: 19. 10.1186/1471-2164-7-19. PubMed DOI PMC
Cooke, T. F. , Fischer C. R., Wu P., et al. 2017. “Genetic Mapping and Biochemical Basis of Yellow Feather Pigmentation in Budgerigars.” Cell 171, no. 2: 427–439. 10.1016/j.cell.2017.08.016. PubMed DOI PMC
D'Alba, L. , Kieffer L., and Shawkey M. D.. 2012. “Relative Contributions of Pigments and Biophotonic Nanostructures to Natural Color Production: A Case Study in Budgerigar (Melopsittacus Undulatus) Feathers.” Journal of Experimental Biology 215, no. 8: 1272–1277. 10.1242/jeb.064907. PubMed DOI
Damé, M. C. F. , Xavier G. M., Oliveira‐Filho J. P., et al. 2012. “A Nonsense Mutation in The Tyrosinase Gene Causes Albinism In Water Buffalo.” BMC Genetics 20, no. 13: 62. 10.1186/1471-2156-13-62. PubMed DOI PMC
De Oliveira Neves, A. C. , Galván I., and Van Den Abeele D.. 2020. “Impairment of Mixed Melanin‐Based Pigmentation in Parrots.” Journal of Experimental Biology 223, no. Pt 12: jeb225912. 10.1242/jeb.225912. PubMed DOI
Dolinska, M. B. , Wingfield P. T., Young K. L., and Sergeev Y. V.. 2019. “The TYRP1‐Mediated Protection of Human Tyrosinase Activity Does Not Involve Stable Interactions of Tyrosinase Domains.” Pigment Cell & Melanoma Research 32, no. 6: 753–765. 10.1111/pcmr.12791. PubMed DOI PMC
Emaresi, G. , Ducrest A. L., Bize P., Richter H., Simon C., and Roulin A.. 2013. “Pleiotropy in the Melanocortin System: Expression Levels of This System Are Associated With Melanogenesis and Pigmentation in the Tawny Owl (Strix Aluco).” Molecular Ecology 22, no. 19: 4915–4930. 10.1111/mec.12438. PubMed DOI
Galván, I. , Jorge A., Ito K., Tabuchi K., Solano F., and Wakamatsu K.. 2013. “Raman Spectroscopy as a Non‐Invasive Technique for the Quantification of Melanins in Feathers and Hairs.” Pigment Cell and Melanoma Research 26, no. 6: 917–923. 10.1111/pcmr.12140. PubMed DOI
Galván, I. , and Solano F.. 2016. “Bird Integumentary Melanins: Biosynthesis, Forms, Function and Evolution.” International Journal of Molecular Sciences 17, no. 4: 520. PubMed PMC
Gautron, A. , Migault M., Bachelot L., Corre S., Galibert M. D., and Gilot D.. 2021. “Human TYRP1: Two Functions for a Single Gene?” Pigment Cell & Melanoma Research 34, no. 5: 836–852. 10.1111/pcmr.12951. PubMed DOI
Ghosh Roy, S. , Bakhrat A., Abdu M., et al. 2024. “Mutations in SLC45A2 Lead to Loss of Melanin in Parrot Feathers.” G3 (Bethesda, Md.) 14, no. 2: jkad254. 10.1093/g3journal/jkad254. PubMed DOI PMC
Guimarães‐Moreira, M. , Marques C. I., Afonso S., Lacerda B., Carneiro M., and Araújo P. M.. 2024. “A Missense Mutation in the Tyrosinase Gene Explains Acromelanism in Domesticated Canaries.” Animal Genetics 55: 838–842. 10.1111/age.13481. PubMed DOI
Gunnarsson, U. , Hellström A. R., Tixier‐Boichard M., et al. 2007. “Mutations in SLC45A2 Cause Plumage Color Variation in Chicken and Japanese Quail.” Genetics 175, no. 2: 867–877. 10.1534/genetics.106.063107. PubMed DOI PMC
Guo, P. , Chen J., Luo L., et al. 2024. “Identification of Differentially Expressed Genes and MicroRNAs in the Gray and White Feather Follicles of Shitou Geese.” Animals: An Open Access Journal From MDPI 14, no. 10: 1508. 10.3390/ani14101508. PubMed DOI PMC
Haase, E. , Ito S., Sell A., and Wakamatsu K.. 1992. “Melanin Concentrations in Feathers From Wild and Domestic Pigeons.” Journal of Heredity 83, no. 1: 64–67. 10.1093/oxfordjournals.jhered.a111160. DOI
Hiragaki, T. , Inoue‐Murayama M., Miwa M., et al. 2008. “Recessive Black Is Allelic to the Yellow Plumage Locus in Japanese Quail and Associated With a Frameshift Deletion in the ASIP Gene.” Genetics 178, no. 2: 771–775. 10.1534/genetics.107.077040. PubMed DOI PMC
Hirobe, T. , Ito S., Wakamatsu K., Kawa Y., and Abe H.. 2014. “The Mouse Brown (b/Tyrp1b) Allele Does Not Affect Pheomelanin Synthesis in Mice.” Zoological Science 31, no. 2: 53–63. 10.2108/zsj.31.53. PubMed DOI
Jeon, D. J. , Paik S., Ji S., and Yeo J. S.. 2021. “Melanin‐Based Structural Coloration of Birds and Its Biomimetic Applications.” Applied Microscopy 51, no. 1: 14. 10.1186/s42649-021-00063-w. PubMed DOI PMC
Jia, X. , Ding P., Chen S., Zhao S., Wang J., and Lai S.. 2021. “Analysis of Mc1r, Mitf, Tyr, Tyrp1, and Mlph Genes Polymorphism in Four Rabbit Breeds With Different Coat Colors.” Animals 11, no. 1: 81. 10.3390/ani11010081. PubMed DOI PMC
Ke, F. , van der Zwan H., Poon E. S. K., et al. 2024. “Convergent Evolution of Parrot Plumage Coloration.” PNAS Nexus 3: pgae107. 10.1093/pnasnexus/pgae107. PubMed DOI PMC
Kerje, S. , Lind J., Schütz K., Jensen P., and Andersson L.. 2003. “Melanocortin 1‐Receptor (MC1R) Mutations Are Associated With Plumage Colour in Chicken.” Animal Genetics 34, no. 4: 241–248. 10.1046/j.1365-2052.2003.00991.x. PubMed DOI
King, R. A. , Pietsch J., Fryer J. P., et al. 2003. “Tyrosinase Gene Mutations in Oculocutaneous Albinism 1 (OCA1): Definition of the Phenotype.” Human Genetics 113, no. 6: 502–513. 10.1007/s00439-003-0998-1. PubMed DOI
Lai, X. , Wichers H. J., Soler‐Lopez M., and Dijkstra B. W.. 2017. “Structure of Human Tyrosinase Related Protein1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis.” Angewandte Chemie (International Ed. In English) 56, no. 33: 9812–9815. 10.1002/anie.201704616. PubMed DOI PMC
Lai, X. , Wichers H. J., Soler‐Lopez M., and Dijkstra B. W.. 2018. “Structure and Function of Human Tyrosinase and Tyrosinase‐Related Proteins.” Chemistry ‐ A European Journal 24, no. 1: 47–55. PubMed
Le, L. , Escobar I. E., Ho T., et al. 2020. “SLC45A2 Protein Stability and Regulation of Melanosome PH Determine Melanocyte Pigmentation.” Molecular Biology of the Cell 31, no. 24: 2687–2702. 10.1091/mbc.E20-03-0200. PubMed DOI PMC
Lecoin, L. , Lahav R., Martin F. H., Teillet M.‐.A.‐.A., and Le Douarin N. M.. 1995. “Steel and C‐kit in the Development of Avian Melanocytes: A Study of Normally Pigmented Birds and of the Hyperpigmented Mutant Silky Fowl.” Developmental Dynamics: An Official Publication of the American Association of the Anatomists 203, no. 1: 106–118. 10.1002/aja.1002030111. PubMed DOI
Li, J. , Bed'hom B., Marthey S., et al. 2019. “A Missense Mutation in TYRP1 Causes the Chocolate Plumage Color in Chicken and Alters Melanosome Structure.” Pigment Cell & Melanoma Research 32, no. 3: 381–390. 10.1111/pcmr.12753. PubMed DOI
Lin, S. J. , Foley J., Jiang T. X., et al. 2013. “Topology of Feather Melanocyte Progenitor Niche Allows Complex Pigment Patterns to Emerge.” Science 340, no. 6139: 1442–1445. 10.1126/science.1230374. PubMed DOI PMC
Lin, S. , Sanchez‐Bretaño A., Leslie J. S., et al. 2022. “Evidence that the Ser192Tyr/Arg402Gln in cis Tyrosinase gene haplotype is a disease‐causing allele in oculocutaneous albinism type 1B (OCA1B).” Npj Genomic Medicine 7, no. 1: 2. 10.1038/s41525-021-00275-9. PubMed DOI PMC
Lyons, L. A. , Foe I. T., Rah H. C., and Grahn R. A.. 2005. “Chocolate Coated Cats: TYRP1 Mutations for Brown Color in Domestic Cats.” Mammalian Genome 16, no. 5: 356–366. 10.1007/s00335-004-2455-4. PubMed DOI
Martin, T. 2002. “A Guide to… Colour Mutations & Genetics in Parrots.” AFA Watchbird 29, no. 4: 11.
McNamara, M. E. , Rossi V., Slater T. S., et al. 2021. “Decoding the Evolution of Melanin in Vertebrates.” Trends in Ecology & Evolution 36, no. 5: 430–443. PubMed
Melo‐Rojas, C. , Bravo‐Matheus P. W., Araoz C. A., and Zapata‐Coacalla C.. 2023. “Identification of Polymorphisms in TYRP1, DCT and RAB38 Genes and Their Association With Coat Color in Alpacas.” Frontiers in Animal Science 4: 1236582. 10.3389/fanim.2023.1236582. DOI
Miwa, M. , Inoue‐Murayama M., Aoki H., et al. 2007. “Endothelin Receptor B2 (EDNRB2) is Associated With the Panda Plumage Colour Mutation in Japanese Quail.” Animal Genetics 38, no. 2: 103–108. 10.1111/j.1365-2052.2007.01568.x. PubMed DOI
Nadeau, N. J. , Mundy N. I., Gourichon D., and Minvielle F.. 2007. “Association of a Single‐Nucleotide Substitution in TYRP1 With Roux in Japanese Quail (Coturnix Japonica).” Animal Genetics 38, no. 6: 609–613. 10.1111/j.1365-2052.2007.01667.x. PubMed DOI
Nakamura, E. , Miyamura Y., Matsunaga J., et al. 2002. “A Novel Mutation of the Tyrosinase Gene Causing Oculocutaneous Albinism Type 1 (OCA1).” Journal of Dermatological Science 28, no. 2: 102–105. 10.1016/S0923-1811(01)00141-4. PubMed DOI
Oetting, W. S. , Witkop C. J., Brown S. A., et al. 1993. “A Frequent Tyrosinase Gene Mutation Associated With Type I‐A (Tyrosinase‐Negative) Oculocutaneous Albinism in Puerto Rico.” American Journal of Human Genetics 52, no. 1: 17–23. PubMed PMC
Opitz, S. , Käsmann‐Kellner B., Kaufmann M., Schwinger E., and Zühlke C. 2004. “Detection of 53 novel DNA variations within the tyrosinase gene and accumulation of mutations in 17 patients with albinism.” Human Mutation 23, no. 6: 630–631. 10.1002/humu.9248. PubMed DOI
Palacký, J. , Mojzeš P., and Bok J.. 2011. “SVD‐Based Method for Intensity Normalization, Background Correction and Solvent Subtraction in Raman Spectroscopy Exploiting the Properties of Water Stretching Vibrations.” Journal of Raman Spectroscopy 42, no. 7: 1528–1539. 10.1002/jrs.2896. DOI
Passmore, L. A. , Kaesmann‐Kellner B., and Weber B. H. F.. 1999. “Novel and Recurrent Mutations in the Tyrosinase Gene and the P Gene in the German Albino Population.” Human Genetics 105, no. 3: 200–210. 10.1007/s004390051090. PubMed DOI
Schlessinger, D. I. , Anoruo M. D., and Schlessinger J.. 2023. Biochemistry, Melanin. StatPearls.
Schmutz, S. M. , Berryere T. G., and Goldfinch A. D.. 2002. “TYRP1 and MC1R Genotypes and Their Effects on Coat Color in Dogs.” Mammalian Genome 13, no. 7: 380–387. 10.1007/s00335-001-2147-2. PubMed DOI
Song, Y. , Zhang Y., Chen M., et al. 2018. “Functional Validation of the Albinism‐Associated Tyrosinase T373K SNP by CRISPR/Cas9‐Mediated Homology‐Directed Repair (HDR) in Rabbits.” eBioMedicine 36: 517–525. 10.1016/j.ebiom.2018.09.041. PubMed DOI PMC
Sultana, H. , Seo D., Choi N. R., et al. 2018. “Identification of Polymorphisms in MITF and DCT Genes and Their Associations With Plumage Colors in Asian Duck Breeds.” Asian‐Australasian Journal of Animal Sciences 31, no. 2: 180–188. 10.5713/ajas.17.0298. PubMed DOI PMC
Tobita‐Teramoto, T. , Jang G. Y., Kino K., Salter D. W., Brumbaugh J., and Akiyama T.. 2000. “Autosomal Albino Chicken Mutation (ca/ca) Deletes Hexanucleotide (‐ΔGACTGG817) at a Copper‐Binding Site of the Tyrosinase Gene.” Poultry Science 79, no. 1: 46–50. 10.1093/ps/79.1.46. PubMed DOI
Ukaji, T. , Iwasa M. A., and Kai O.. 2016. “Tyrosinase (Tyr) Gene Mutation in Albino Mongolian Gerbil (Meriones unguiculatus).” Open Journal of Animal Sciences 6, no. 4: 259–268. 10.4236/ojas.2016.64031. DOI
Utzeri, V. J. , Ribani A., Schiavo G., and Fontanesi L.. 2021. “Describing variability in the tyrosinase (TYR) gene, the albino coat colour locus, in domestic and wild European rabbits.” Italian Journal of Animal Science 20, no. 1: 181–187. 10.1080/1828051X.2021.1877574. DOI
Vaez, M. , Follett S. A., Bed'hom B., Gourichon D., Tixier‐Boichard M., and Burke T.. 2008. “A Single Point‐Mutation Within the Melanophilin Gene Causes the Lavender Plumage Colour Dilution Phenotype in the Chicken.” BMC Genetics 9: 7. 10.1186/1471-2156-9-7. PubMed DOI PMC
Xu, Y. , Zhang X. H., and Pang Y. Z.. 2013. “Association of Tyrosinase (TYR) and Tyrosinase‐Related Protein 1 (TYRP1) With Melanic Plumage Color in Korean Quails (Coturnix Coturnix).” Asian‐Australasian Journal of Animal Sciences 26, no. 11: 1518–1522. 10.5713/ajas.2013.13162. PubMed DOI PMC
Yang, L. , Mo C., Shen W., et al. 2019. “The Recessive C Locus in the MITF Gene Plays a Key Regulatory Role in the Plumage Colour Pattern of Duck (Anas Platyrhynchos).” British Poultry Science 60, no. 2: 105–108. 10.1080/00071668.2018.1564237. PubMed DOI