A molecular mechanism for bright color variation in parrots

. 2024 Nov ; 386 (6721) : eadp7710. [epub] 20241101

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39480920

Grantová podpora
101000504 European Research Council - International

Parrots produce stunning plumage colors through unique pigments called psittacofulvins. However, the mechanism underlying their ability to generate a spectrum of vibrant yellows, reds, and greens remains enigmatic. We uncover a unifying chemical basis for a wide range of parrot plumage colors, which result from the selective deposition of red aldehyde- and yellow carboxyl-containing psittacofulvin molecules in developing feathers. Through genetic mapping, biochemical assays, and single-cell genomics, we identified a critical player in this process, the aldehyde dehydrogenase ALDH3A2, which oxidizes aldehyde psittacofulvins into carboxyl forms in late-differentiating keratinocytes during feather development. The simplicity of the underlying molecular mechanism, in which a single enzyme influences the balance of red and yellow pigments, offers an explanation for the exceptional evolutionary lability of parrot coloration.

BIOPOLIS Program in Genomics Biodiversity and Land Planning CIBIO Vairão Portugal

cE3c Center for Ecology Evolution and Environmental Change and CHANGE Departamento de Biologia Animal Faculdade de Ciências Universidade de Lisboa Lisboa Portugal

CIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos InBIO Laboratório Associado Universidade do Porto Vairão Portugal

Departamento de Biologia Faculdade de Ciências da Universidade do Porto Porto Portugal

Department of Food Science Faculty of Agrobiology Food and Natural Resources Czech University of Life Sciences Prague Prague Czech Republic

Department of Genetics Washington University School of Medicine St Louis MO USA

Department of Life Sciences Ben Gurion University of the Negev Beer Sheva 84105 Israel

Department of Pathology and Immunology Washington University School of Medicine St Louis MO USA

Department of Philosophy and History of Science Faculty of Science Charles University Prague Czech Republic

Department of Recent Vertebrates Royal Belgian Institute of Natural Sciences Brussels Belgium

Edison Family Center for Systems Biology and Genome Sciences Washington University School of Medicine St Louis MO USA

Evolution and Optics of Nanostructures Group Biology Department Ghent University Ghent Belgium

Institute of Physics Faculty of Mathematics and Physics Charles University Prague Czech Republic

MHNC UP Natural History and Science Museum of the University of Porto Porto Portugal

School of Biological Sciences The University of Hong Kong Hong Kong

University of Coimbra MARE Marine and Environmental Sciences Centre Department of Life Sciences Coimbra Portugal

Zobrazit více v PubMed

Cuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G, Hauber ME, Hill GE, Jablonski NG, Jiggins CD, Kelber A, Mappes J, et al. The biology of color. Science. 2017;357:eaan0221. PubMed

Svensson, Wong Carotenoid-based signals in behavioural ecology: a review. Behaviour. 2011;148:131–189.

Amundsen T. Why are female birds ornamented? Trends Ecol Evol. 2000;15:149–155. PubMed

Hill GE. In: Bird Coloration, Volume 2: Function and Evolution. Hill GE, McGraw KJ, editors. Harvard University Press; Cambridge, MA: 2006. Female choice for ornamental coloration; pp. 137–200.

Terrill RS, Shultz AJ. Feather function and the evolution of birds. Biological Reviews. 2023;98:540–566. PubMed

Mason NA, Bowie RCK. Plumage patterns: Ecological functions, evolutionary origins, and advances in quantification. Auk. 2020;137:ukaa060

Dunn PO, Armenta JK, Whittingham LA. Natural and sexual selection act on different axes of variation in avian plumage color. Sci Adv. 2015;1:e1400155. doi: 10.1126/sciadv.1400155. PubMed DOI PMC

Fox HM, Vevers G. The Nature of Animal Colors. Macmillan; New York: 1960.

Barrett RDH, Laurent S, Mallarino R, Pfeifer SP, Xu CCY, Foll M, Wakamatsu K, Duke-Cohan JS, Jensen JD, Hoekstra HE. Linking a mutation to survival in wild mice. Science. 2019;363:499–504. PubMed

Weaver RJ, Koch RE, Hill GE. What maintains signal honesty in animal colour displays used in mate choice? Philosophical Transactions of the Royal Society B: Biological Sciences. 2017;372:20160343. doi: 10.1098/rstb.2016.0343. PubMed DOI PMC

Nemesio A. Color production and evolution in parrots. International Journal of Ornithology. 2001;4:75–102.

Berg ML, Bennett ATD. The evolution of plumage colouration in parrots: a review. Emu - Austral Ornithology. 2010;110:10–20.

Arnold KE, Owens IPF, Marshall NJ. Fluorescent Signaling in Parrots. Science. 2002;295:92. PubMed

Masello JF, Pagnossin ML, Lubjuhn T, Quillfeldt P. Ornamental non-carotenoid red feathers of wild burrowing parrots. Ecol Res. 2004;19:421–432.

Masello JF, Quillfeldt P. Body size, body condition and ornamental feathers of Burrowing Parrots: variation between years and sexes, assortative mating and influences on breeding success. Emu - Austral Ornithology. 2003;103:149–161.

Burtt EH, Schroeder MR, Smith LA, Sroka JE, McGraw KJ. Colourful parrot feathers resist bacterial degradation. Biol Lett. 2011;7:214–216. doi: 10.1098/rsbl.2010.0716. PubMed DOI PMC

Carballo L, Delhey K, Valcu M, Kempenaers B. Body size and climate as predictors of plumage colouration and sexual dichromatism in parrots. J Evol Biol. 2020;33:1543–1557. PubMed

Heinsohn R, Legge S, Endler JA. Extreme Reversed Sexual Dichromatism in a Bird Without Sex Role Reversal. Science. 2005;309:617–619. PubMed

Stradi R, Pini E, Celentano G. The chemical structure of the pigments in Ara macao plumage. Comp Biochem Physiol B Biochem Mol Biol. 2001;130:57–63. PubMed

Krukenberg CFW. Die Federfarbstoffe der Psittaciden. Vergleichend-physiologische Studien Reihe 2, Abtlg. 1882;2:29–36.

Veronelli M, Zerbi G, Stradi R. In situ resonance Raman spectra of carotenoids in bird’s feathers. Journal of Raman Spectroscopy. 1995;26:683–692.

McGraw KJ, Nogare MC. Distribution of unique red feather pigments in parrots. Biol Lett. 2005;1:38–43. doi: 10.1098/rsbl.2004.0269. PubMed DOI PMC

Toomey MB, Lopes RJ, Araújo PM, Johnson JD, Gazda MA, Afonso S, Mota PG, Koch RE, Hill GE, Corbo JC, Carneiro M. High-density lipoprotein receptor SCARB1 is required for carotenoid coloration in birds. Proceedings of the National Academy of Sciences. 2017;114:5219–5224. doi: 10.1073/pnas.1700751114. PubMed DOI PMC

Toomey MB, Marques CI, Araújo PM, Huang D, Zhong S, Liu Y, Schreiner GD, Myers CA, Pereira P, Afonso S, Andrade P, et al. A mechanism for red coloration in vertebrates. Current Biology. 2022;32:4201–4214.:e12. doi: 10.1016/j.cub.2022.08.013. PubMed DOI PMC

Gazda MA, Araújo PM, Lopes RJ, Toomey MB, Andrade P, Afonso S, Marques C, Nunes L, Pereira P, Trigo S, Hill GE, et al. A genetic mechanism for sexual dichromatism in birds. Science. 2020;368:1270–1274. PubMed

Cooke TF, Fischer CR, Wu P, Jiang TX, Xie KT, Kuo J, Doctorov E, Zehnder A, Khosla C, Chuong CM, Bustamante CD. Genetic Mapping and Biochemical Basis of Yellow Feather Pigmentation in Budgerigars. Cell. 2017;171:427–439. doi: 10.1016/j.cell.2017.08.016. PubMed DOI PMC

Mundy NI. Colouration Genetics: Pretty Polymorphic Parrots. Current Biology. 2018;28:R113–R114. PubMed

Ke F, van der Zwan H, Poon ESK, Cloutier A, Van den Abeele D, van der Sluis R, Sin SYW. Convergent evolution of parrot plumage coloration. PNAS Nexus. 2024;3:pgae107. doi: 10.1093/pnasnexus/pgae107. PubMed DOI PMC

Barnsley JE, Tay EJ, Gordon KC, Thomas DB. Frequency dispersion reveals chromophore diversity and colour-tuning mechanism in parrot feathers. R Soc Open Sci. 2018;5:172010. doi: 10.1098/rsos.172010. PubMed DOI PMC

Wright TF, Schirtzinger EE, Matsumoto T, Eberhard JR, Graves GR, Sanchez JJ, Capelli S, Müller H, Scharpegge J, Chambers GK, Fleischer RC. A Multilocus molecular phylogeny of the parrots (Psittaciformes): Support for a Gondwanan origin during the Cretaceous. Mol Biol Evol. 2008;25:2141–2156. doi: 10.1093/molbev/msn160. PubMed DOI PMC

Tay EJ, Barnsley JE, Thomas DB, Gordon KC. Elucidating the resonance Raman spectra of psittacofulvins. Spectrochim Acta A Mol Biomol Spectrosc. 2021;262:120146. PubMed

Kane MA, Napoli JL. Quantification of Endogenous Retinoids. 2010:1–54. doi: 10.1007/978-1-60327-325-1_1. PubMed DOI PMC

Collar N, Boesman PFD. Birds of the World. Cornell Lab of Ornithology; 2020. Dusky Lory (Pseudeos fuscata)

Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y. A human transporter protein that mediates the final excretion step for toxic organic cations. Proceedings of the National Academy of Sciences. 2005;102:17923–17928. doi: 10.1073/pnas.0506483102. PubMed DOI PMC

Kelson TL, Secor McVoy JR, Rizzo WB. Human liver fatty aldehyde dehydrogenase: microsomal localization, purification, and biochemical characterization. Biochimica et Biophysica Acta (BBA) - General Subjects. 1997;1335:99–110. PubMed

Chang C-H, Yu M, Wu P, Jiang T-X, Yu H-S, Widelitz RB, Chuong C-M. Sculpting skin appendages out of epidermal layers via temporally and spatially regulated apoptotic events. Journal of Investigative Dermatology. 2004;122:1348–1355. doi: 10.1111/j.0022-202X.2004.22611.x. PubMed DOI PMC

Rogers GR, Markova NG, De Laurenzi V, Rizzo WB, Compton JG. Genomic organization and expression of the human fatty aldehyde dehydrogenase gene (FALDH) Genomics. 1997;39:127–135. PubMed

Yue Z, Jiang TX, Wu P, Widelitz RB, Chuong CM. Sprouty/FGF signaling regulates the proximal–distal feather morphology and the size of dermal papillae. Dev Biol. 2012;372:45–54. doi: 10.1016/j.ydbio.2012.09.004. PubMed DOI PMC

Yu M, Wu P, Widelitz RB, Chuong C-M. The morphogenesis of feathers. Nature. 2002;420:308–312. doi: 10.1038/nature01196. PubMed DOI PMC

Champliaud M-F, Burgeson RE, Jin W, Baden HP, Olson PF. cDNA Cloning and characterization of Sciellin, a LIM domain protein of the keratinocyte cornified envelope. Journal of Biological Chemistry. 1998;273:31547–31554. PubMed

Strasser B, Mlitz V, Hermann M, Rice RH, Eigenheer RA, Alibardi L, Tschachler E, Eckhart L. Evolutionary origin and diversification of epidermal barrier proteins in Amniotes. Mol Biol Evol. 2014;31:3194–3205. doi: 10.1093/molbev/msu251. PubMed DOI PMC

Chuong CM, Edelman GM. Expression of cell-adhesion molecules in embryonic induction. II. Morphogenesis of adult feathers. J Cell Biol. 1985;101:1027–1043. doi: 10.1083/jcb.101.3.1027. PubMed DOI PMC

Nakahara K, Ohkuni A, Kitamura T, Abe K, Naganuma T, Ohno Y, Zoeller RA, Kihara A. The Sjögren-Larsson syndrome gene encodes a hexadecenal dehydrogenase of the sphingosine 1-phosphate degradation pathway. Mol Cell. 2012;46:461–471. PubMed

Adamec F, Greco JA, LaFountain AM, Magdaong NM, Fuciman M, Birge RR, Polívka T, Frank HA. Spectroscopic investigation of a brightly colored psittacofulvin pigment from parrot feathers. Chem Phys Lett. 2016;648:195–199.

Lin Z, Carney G, Rizzo WB. Genomic organization, expression, and alternate splicing of the mouse fatty aldehyde dehydrogenase gene. Mol Genet Metab. 2000;71:496–505. PubMed

Morelli R, Loscalzo R, Stradi R, Bertelli A, Falchi M. Evaluation of the antioxidant activity of new carotenoid-like compounds by electron paramagnetic resonance. Drugs Exp Clin Res. 2003;29:95–100. PubMed

Mundy NII, Stapley J, Bennison C, Tucker R, Twyman H, Kim KW, Burke T, Birkhead TRR, Andersson S, Slate J. Red carotenoid coloration in the zebra finch is controlled by a cytochrome P450 gene cluster. Current Biology. 2016;26:1435–1440. PubMed

Roulin A. The evolution, maintenance and adaptive function of genetic colour polymorphism in birds. Biol Rev Camb Philos Soc. 2004;79:815–848. PubMed

Pryke SR. Fiery red heads: Female dominance among head color morphs in the Gouldian finch. Behavioral Ecology. 2007;18:621–627.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna: 2022. https://www.R-project.org .

Cheng H, Jarvis ED, Fedrigo O, Koepfli K-P, Urban L, Gemmell NJ, Li H. Haplotype-resolved assembly of diploid genomes without parental data. Nat Biotechnol. 2022;40:1332–1335. doi: 10.1038/s41587-022-01261-x. PubMed DOI PMC

Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat Methods. 2021;18:170–175. doi: 10.1038/s41592-020-01056-5. PubMed DOI PMC

Alonge M, Lebeigle L, Kirsche M, Jenike K, Ou S, Aganezov S, Wang X, Lippman ZB, Schatz MC, Soyk S. Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biol. 2022;23:258. doi: 10.1186/s13059-022-02823-7. PubMed DOI PMC

Holt C, Yandell M. MAKER2: An annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 2011;12:491. doi: 10.1186/1471-2105-12-491. PubMed DOI PMC

Card DC, Adams RH, Schield DR, Perry BW, Corbin AB, Pasquesi GIM, Row K, Van Kleeck MJ, Daza JM, Booth W, Montgomery CE, et al. Genomic basis of convergent island phenotypes in Boa constrictors. Genome Biol Evol. 2019;11:3123–3143. doi: 10.1093/gbe/evz226. PubMed DOI PMC

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. doi: 10.1101/gr.107524.110. PubMed DOI PMC

Browning BL, Zhou Y, Browning SR. A one-penny imputed genome from next-generation reference panels. The American Journal of Human Genetics. 2018;103:338–348. doi: 10.1016/j.ajhg.2018.07.015. PubMed DOI PMC

Browning BL, Tian X, Zhou Y, Browning SR. Fast two-stage phasing of large-scale sequence data. The American Journal of Human Genetics. 2021;108:1880–1890. doi: 10.1016/j.ajhg.2021.08.005. PubMed DOI PMC

Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet. 2012;44:821–824. doi: 10.1038/ng.2310. PubMed DOI PMC

Kim D, Langmead B, Salzberg SL. HISAT: A fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–360. doi: 10.1038/nmeth.3317. PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. PubMed

Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019;47:e47. doi: 10.1093/nar/gkz114. PubMed DOI PMC

Li H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

Li B, Dewey CN. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323. doi: 10.1186/1471-2105-12-323. PubMed DOI PMC

Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40. doi: 10.1093/bioinformatics/btp616. PubMed DOI PMC

Cao J, Spielmann M, Qiu X, Huang X, Ibrahim DM, Hill AJ, Zhang F, Mundlos S, Christiansen L, Steemers FJ, Trapnell C, et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature. 2019;566:496–502. doi: 10.1038/s41586-019-0969-x. PubMed DOI PMC

Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381–386. doi: 10.1038/nbt.2859. PubMed DOI PMC

Satpathy AT, Granja JM, Yost KE, Qi Y, Meschi F, McDermott GP, Olsen BN, Mumbach MR, Pierce SE, Corces MR, Shah P, et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat Biotechnol. 2019;37:925–936. doi: 10.1038/s41587-019-0206-z. PubMed DOI PMC

Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–589. doi: 10.1016/j.molcel.2010.05.004. PubMed DOI PMC

Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2010;20:110–121. doi: 10.1101/gr.097857.109. PubMed DOI PMC

Armstrong J, Hickey G, Diekhans M, Fiddes IT, Novak AM, Deran A, Fang Q, Xie D, Feng S, Stiller J, Genereux D, et al. Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature. 2020;587:246–251. doi: 10.1038/s41586-020-2871-y. PubMed DOI PMC

Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC, Nabholz B, Howard JT, Suh A, et al. Phylogenomic analyses data of the avian phylogenomics project. Gigascience. 2015;4:4. doi: 10.1186/s13742-014-0038-1. PubMed DOI PMC

Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–98.

Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–448. PubMed

Palacký J, Mojzeš P, Bok J. SVD-based method for intensity normalization, background correction and solvent subtraction in Raman spectroscopy exploiting the properties of water stretching vibrations. Journal of Raman Spectroscopy. 2011;42:1528–1539.

Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest Package: Tests in linear mixed effects models. J Stat Softw. 2017;82:1–26.

Enbody ED, Sprehn CG, Abzhanov A, Bi H, Dobreva MP, Osborne OG, Rubin C-J, Grant PR, Grant BR, Andersson L. A multispecies BCO2 beak color polymorphism in the Darwin’s finch radiation. Current Biology. 2021;31:5597–5604.:e7. PubMed

Morgulis A, Gertz EM, Schäffer AA, Agarwala R. WindowMasker: window-based masker for sequenced genomes. Bioinformatics. 2006;22:134–141. PubMed

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC

Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004;5:59. doi: 10.1186/1471-2105-5-59. PubMed DOI PMC

Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19:ii215–ii225. PubMed

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. PubMed

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–2158. doi: 10.1093/bioinformatics/btr330. PubMed DOI PMC

Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2014;6:80–92. doi: 10.4161/fly.19695. PubMed DOI PMC

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC. PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics. 2007;81:559–575. doi: 10.1086/519795. PubMed DOI PMC

Turner SD. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. J Open Source Softw. 2018;3:731.

Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: Structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28:i333–i339. doi: 10.1093/bioinformatics/bts378. PubMed DOI PMC

Layer RM, Chiang C, Quinlan AR, Hall IM. LUMPY: A probabilistic framework for structural variant discovery. Genome Biol. 2014;26:R84. doi: 10.1186/gb-2014-15-6-r84. PubMed DOI PMC

Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–26. doi: 10.1038/nbt.1754. PubMed DOI PMC

Noe L, Kucherov G. YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Res. 2005;33:W540–W543. doi: 10.1093/nar/gki478. PubMed DOI PMC

Gautier M, Vitalis R. rehh : an R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics. 2012;28:1176–1177. PubMed

Platt A, Pivirotto A, Knoblauch J, Hey J. An estimator of first coalescent time reveals selection on young variants and large heterogeneity in rare allele ages among human populations. PLoS Genet. 2019;15:e1008340. doi: 10.1371/journal.pgen.1008340. PubMed DOI PMC

Bergeron LA, Besenbacher S, Zheng J, Li P, Bertelsen MF, Quintard B, Hoffman JI, Li Z, Leger J, Shao C, Stiller J, et al. Evolution of the germline mutation rate across vertebrates. Nature. 2023;615:285–291. doi: 10.1038/s41586-023-05752-y. PubMed DOI PMC

Backström N, Forstmeier W, Schielzeth H, Mellenius H, Nam K, Bolund E, Webster MT, Öst T, Schneider M, Kempenaers B, Ellegren H. The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Res. 2010;20:485–495. doi: 10.1101/gr.101410.109. PubMed DOI PMC

Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, et al. A high-resolution recombination map of the human genome. Nat Genet. 2002;31:241–247. PubMed

Groenen MAM, Wahlberg P, Foglio M, Cheng HH, Megens H-J, Crooijmans RPMA, Besnier F, Lathrop M, Muir WM, Wong GK-S, Gut I, et al. A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. Genome Res. 2009;19:510–519. doi: 10.1101/gr.086538.108. PubMed DOI PMC

Watterson GA. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975;7:256–276. PubMed

Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinformatics. 2014;15:356. doi: 10.1186/s12859-014-0356-4. PubMed DOI PMC

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12.

Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC

Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. PubMed

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC

Lun ATL, Riesenfeld S, Andrews T, Dao TP, Gomes T, Marioni JC. EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol. 2019;20:63. doi: 10.1186/s13059-019-1662-y. PubMed DOI PMC

Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33:495–502. doi: 10.1038/nbt.3192. PubMed DOI PMC

Chen C-F, Foley J, Tang P-C, Li A, Jiang TX, Wu P, Widelitz RB, Chuong CM. Development, regeneration, and evolution of feathers. Annu Rev Anim Biosci. 2015;3:169–195. doi: 10.1146/annurev-animal-022513-114127. PubMed DOI PMC

Granja JM, Corces MR, Pierce SE, Bagdatli ST, Choudhry H, Chang HY, Greenleaf WJ. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat Genet. 2021;53:403–411. doi: 10.1038/s41588-021-00790-6. PubMed DOI PMC

Ng CS, Wu P, Foley J, Foley A, McDonald M-L, Juan W-T, Huang C-J, Lai Y-T, Lo W-S, Chen C-F, Leal SM, et al. The chicken frizzle feather is due to an α-Keratin (KRT75) mutation that causes a defective rachis. PLoS Genet. 2012;8:e1002748. doi: 10.1371/journal.pgen.1002748. PubMed DOI PMC

Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS. Model-based Analysis of ChIP-Seq (MACS) Genome Biol. 2008;9:R137. doi: 10.1186/gb-2008-9-9-r137. PubMed DOI PMC

Wagih O. ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics. 2017;33:3645–3647. PubMed

Zerbino DR, Johnson N, Juettemann T, Wilder SP, Flicek P. WiggleTools: parallel processing of large collections of genome-wide datasets for visualization and statistical analysis. Bioinformatics. 2014;30:1008–1009. doi: 10.1093/bioinformatics/btt737. PubMed DOI PMC

Granja JM, Corces MR, Pierce SE, Bagdatli ST, Choudhry H, Chang HY, Greenleaf WJ. Author Correction: ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat Genet. 2021;53:935. PubMed PMC

Solé-Boldo L, Raddatz G, Gutekunst J, Gilliam O, Bormann F, Liberio MS, Hasche D, Antonopoulos W, Mallm J, Lonsdorf AS, Rodríguez-Paredes M, et al. Differentiation-related epigenomic changes define clinically distinct keratinocyte cancer subclasses. Mol Syst Biol. 2022;18:e11073. doi: 10.15252/msb.202211073. PubMed DOI PMC

Glotzer DJ, Zelzer E, Olsen BR. Impaired skin and hair follicle development in Runx2 deficient mice. Dev Biol. 2008;315:459–473. doi: 10.1016/j.ydbio.2008.01.005. PubMed DOI PMC

Smits JPH, Qu J, Pardow F, van den Brink NJM, Rodijk-Olthuis D, van Vlijmen-Willems IMJJ, van Heeringen SJ, Zeeuwen PLJM, Schalkwijk J, Zhou H, van den Bogaard EH. The aryl hydrocarbon receptor regulates epidermal differentiation through transient activation of TFAP2A. Journal of Investigative Dermatology. 2024 in press. PubMed

Boglev Y, Wilanowski T, Caddy J, Parekh V, Auden A, Darido C, Hislop NR, Cangkrama M, Ting SB, Jane SM. The unique and cooperative roles of the Grainy head-like transcription factors in epidermal development reflect unexpected target gene specificity. Dev Biol. 2011;349:512–522. PubMed

Botchkarev VA, Komarova EA, Siebenhaar F, Botchkareva NV, Sharov AA, Komarov PG, Maurer M, Gudkov AV, Gilchrest BA. p53 Involvement in the control of murine hair follicle regression. Am J Pathol. 2001;158:1913–1919. doi: 10.1016/S0002-9440(10)64659-7. PubMed DOI PMC

Kulakovskiy IV, Vorontsov IE, Yevshin IS, Sharipov RN, Fedorova AD, Rumynskiy EI, Medvedeva YA, Magana-Mora A, Bajic VB, Papatsenko DA, Kolpakov FA, et al. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res. 2018;46:D252–D259. doi: 10.1093/nar/gkx1106. PubMed DOI PMC

Hains T, Pirro S, O’Neill K, Valez J, Speed N, Clubb S, Oleksyk T, Bates J, Hackett S. The complete genome sequences of 94 species of parrots (Psittaciformes, Aves) Biodiversity Genomes. 2022 doi: 10.56179/001c.40338. PubMed DOI PMC

Ma SM, Li JW-H, Choi JW, Zhou H, Lee KKM, Moorthie VA, Xie X, Kealey JT, Da Silva NA, Vederas JC, Tang Y. Complete reconstitution of a highly reducing iterative polyketide synthase. Science. 2009;326:589–592. doi: 10.1126/science.1175602. PubMed DOI PMC

Roy B, Granas D, Bragg F, Cher JAY, White MA, Stormo GD. Autoregulation of yeast ribosomal proteins discovered by efficient search for feedback regulation. Commun Biol. 2020;3:761. doi: 10.1038/s42003-020-01494-z. PubMed DOI PMC

Shen MWY, Fang F, Sandmeyer S, Da Silva NA. Development and characterization of a vector set with regulated promoters for systematic metabolic engineering in Saccharomyces cerevisiae. Yeast. 2012;29:495–503. PubMed

Ji L, Guo W. Single-cell RNA sequencing highlights the roles of C1QB and NKG7 in the pancreatic islet immune microenvironment in type 1 diabetes mellitus. Pharmacol Res. 2023;187:106588. PubMed

Roh HC, Kumari M, Taleb S, Tenen D, Jacobs C, Lyubetskaya A, Tsai LT-Y, Rosen ED. Adipocytes fail to maintain cellular identity during obesity due to reduced PPARγ activity and elevated TGFβ-SMAD signaling. Mol Metab. 2020;42:101086. doi: 10.1016/j.molmet.2020.101086. PubMed DOI PMC

Nishimura M, Nishie W, Shirafuji Y, Shinkuma S, Natsuga K, Nakamura H, Sawamura D, Iwatsuki K, Shimizu H. Extracellular cleavage of collagen XVII is essential for correct cutaneous basement membrane formation. Hum Mol Genet. 2016;25:328–339. PubMed

Cohen E, Johnson C, Redmond CJ, Nair RR, Coulombe PA. Revisiting the significance of keratin expression in complex epithelia. J Cell Sci. 2022;135 doi: 10.1242/jcs.260594. PubMed DOI PMC

Wegner J, Loser K, Apsite G, Nischt R, Eckes B, Krieg T, Werner S, Sorokin L. Laminin α5 in the keratinocyte basement membrane is required for epidermal–dermal intercommunication. Matrix Biology. 2016;56:24–41. PubMed

Wu P, Yan J, Lai Y-C, Ng CS, Li A, Jiang X, Elsey RM, Widelitz R, Bajpai R, Li W-H, Chuong C-M. Multiple regulatory modules are required for scale-to-feather conversion. Mol Biol Evol. 2018;35:417–430. doi: 10.1093/molbev/msx295. PubMed DOI PMC

Ting-Berreth SA, Chuong C-M. Sonic hedgehogin feather morphogenesis: Induction of mesenchymal condensation and association with cell death. Developmental Dynamics. 1996;207:157–170. PubMed

Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ, Rotem A, Rodman C, Lian C, Murphy G, Fallahi-Sichani M, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352:189–196. doi: 10.1126/science.aad0501. PubMed DOI PMC

Kowata K, Nakaoka M, Nishio K, Fukao A, Satoh A, Ogoshi M, Takahashi S, Tsudzuki M, Takeuchi S. Identification of a feather β-keratin gene exclusively expressed in pennaceous barbule cells of contour feathers in chicken. Gene. 2014;542:23–28. PubMed

Grikscheit K, Grosse R. Formins at the Junction. Trends Biochem Sci. 2016;41:148–159. PubMed

Irvine AD, Corden LD, Swensson O, Swensson B, Moore JE, Frazer DG, Smith FJD, Knowlton RG, Christophers E, Rochels R, Uitto J, et al. Mutations in cornea-specific keratin K3 or K12 genes cause Meesmann’s corneal dystrophy. Nat Genet. 1997;16:184–187. PubMed

Foitzik K, Krause K, Nixon AJ, Ford CA, Ohnemus U, Pearson AJ, Paus R. Prolactin and its receptor are expressed in murine hair follicle epithelium, show hair cycle-dependent expression, and induce catagen. Am J Pathol. 2003;162:1611–1621. doi: 10.1016/S0002-9440(10)64295-2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...