Multiple mutations in polyketide synthase led to disruption of Psittacofulvin production across diverse parrot species
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
941/21
Israel Science Foundation (ISF)
PubMed
39820005
PubMed Central
PMC11739604
DOI
10.1038/s42003-025-07537-7
PII: 10.1038/s42003-025-07537-7
Knihovny.cz E-zdroje
- MeSH
- biologické pigmenty * biosyntéza MeSH
- mutace * MeSH
- papouškovití * genetika metabolismus MeSH
- peří metabolismus MeSH
- pigmentace genetika MeSH
- polyketidsynthasy * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické pigmenty * MeSH
- polyketidsynthasy * MeSH
Polyketide synthases (PKSs) are crucial multidomain enzymes in diverse natural product biosynthesis. Parrots use a type I PKS to produce a unique pigment called psittacofulvin in their feathers. In domesticated budgerigars and lovebirds, the same amino acid substitution (R644W) within malonyl/acetyltransferase (MAT) domain of this enzyme has been shown to cause the blue phenotype with no psittacofulvin pigmentation, proposing a strong evolutionary constraint on the mechanism. Here, we identified seven previously unreported variants in PKS associated with defective psittacofulvin production in four diverse species, including three nonsense mutations. Intriguingly, three of the remaining nonsynonymous substitutions reside within the ketoacyl synthase (KS) domain, whereas one at MAT domain. The heterologous expression of these PKS variants in yeast confirmed complete or partial loss of psittacofulvin production. These findings establish PKS as a functionally conserved key-enzyme determining psittacofulvin-based hues among diverse parrots, highlighting multiple conserved domains essential for the PKS function.
BIOPOLIS Program in Genomics Biodiversity and Land Planning CIBIO Vairão Portugal
Department of Food Science Faculty of Agrobiology Food and Natural Resources Prague 6 Czechia
Department of Life Sciences Ben Gurion University of the Negev Beer Sheva Israel
Zobrazit více v PubMed
Prum, R. O., Torres, R., Kovach, C., Williamson, S. & Goodman, S. M. Coherent light scattering by nanostructured collagen arrays in the caruncles of the malagasy asities (Eurylaimidae: Aves). J. Exp. Biol.202, 3507–3522 (1999). PubMed
Prum, R. O. & Brush, A. H. The evolutionary origin and diversification of feathers. Q. Rev. Biol. 77, 261–295 (2002). PubMed
Krukenberg, C. F. W. Die federfarbstoffe der psittaciden. Vergleichend-physiologische Studien Reihe2, 29–36 (1882).
Stradi, R., Pini, E. & Celentano, G. The chemical structure of the pigments in Ara macao plumage. Compar. Biochem. Physiol. B Biochem. Mol. Biol.130, 57–63 (2001). PubMed
Tinbergen, J., Wilts, B. D. & Stavenga, D. G. Spectral tuning of amazon parrot feather coloration by psittacofulvin pigments and spongy structures. J. Exp. Biol.216, 4358–4364 (2013). PubMed
Masello, J. F. & Quillfeldt, P. Body size, body condition and ornamental feathers of Burrowing Parrots: Variation between years and sexes, assortative mating and influences on breeding success. Emu103, 149–161 (2003).
Burtt, E. H., Schroeder, M. R., Smith, L. A., Sroka, J. E. & McGraw, K. J. Colourful parrot feathers resist bacterial degradation. Biol. Lett.7, 214–216 (2011). PubMed PMC
Cooke, T. F. et al. Genetic mapping and biochemical basis of yellow feather pigmentation in budgerigars. Cell171, 427–439.e21 (2017). PubMed PMC
Torres, J. P. & Schmidt, E. W. The biosynthetic diversity of the animal world. J. Biol. Chem. 294, 17684 –17692 (2019). PubMed PMC
Li, F. et al. Sea Urchin Polyketide Synthase SpPks1 Produces the Naphthalene Precursor to Echinoderm Pigments. J. Am. Chem. Soc.144, 9363–9371 (2022). PubMed PMC
Ke, F. et al. Convergent evolution of parrot plumage coloration. PNAS Nexus10.1093/pnasnexus/pgae107 (2024). PubMed PMC
Adamec, F. et al. Spectroscopic investigation of a brightly colored psittacofulvin pigment from parrot feathers. Chem. Phys. Lett.648, 195–199 (2016).
Arbore, R. et al. A molecular mechanism for bright color variation in parrots. Science386, eadp7710 (2024). PubMed PMC
Chan, D. T. C., Poon, E. S. K., Wong, A. T. C. & Sin, S. Y. W. Global trade in parrots – Influential factors of trade and implications for conservation. Glob. Ecol. Conserv.30, e01784 (2021).
Ross, C., Opel, V., Scherlach, K. & Hertweck, C. Biosynthesis of antifungal and antibacterial polyketides by Burkholderia gladioli in coculture with Rhizopus microsporus. Mycoses57, 48–55 (2014). PubMed
McGraw, K. J. & Nogare, M. C. Carotenoid pigments and the selectivity of psittacofulvin-based coloration systems in parrots. Compare. Biochem. Physiol. B Biochem. Mol. Biol.138, 229–233 (2004). PubMed
D’Alba, L., Kieffer, L. & Shawkey, M. D. Relative contributions of pigments and biophotonic nanostructures to natural color production: a case study in budgerigar (Melopsittacus undulatus) feathers. J. Exp. Biol.215, 1272–1277 (2012). PubMed
Leibundgut, M., Maier, T., Jenni, S. & Ban, N. The multienzyme architecture of eukaryotic fatty acid synthases. Curr. Opin. Struct. Biol.18, 714-725 (2008). PubMed
Ma, S. M. et al. Complete reconstitution of a highly reducing iterative polyketide synthase. Science326, 589–592 (2009). PubMed PMC
Hausmann, F., Arnold, K. E., Marshall, N. J. & Owens, I. P. F. Ultraviolet signals in birds are special. Proc. R. Soc. B Biol. Sci.270, 61–67 (2003). PubMed PMC
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature596, 583–589 (2021). PubMed PMC
Maier, T., Leibundgut, M. & Ban, N. The Crystal Structure of a Mammalian Fatty Acid Synthase. https://www.science.org (2008). PubMed
Ghosh Roy, S. et al. Mutations in SLC45A2 lead to loss of melanin in parrot feathers. G3: Genes, Genomes, Genetics10.1093/g3journal/jkad254 (2023). PubMed PMC
Bonin, J. & Homberger, D. Possible convergent evolution of yellow psittacofulvin colors in the feathers of cockatoos (Cacatuidae) and parrots (Psittacidae). FASEB J.26, 722.23 (2012).
De Oliveira Neves, A. C., Galván, I. & Van Den Abeele, D. Impairment of mixed melanin-based pigmentation in parrots. J. Exp. Biol.223, jeb225912 (2020). PubMed
Price-Waldman, R. & Stoddard, M. C. Avian coloration genetics: recent advances and emerging questions. J. Heredity112, 395–416 (2021). PubMed
Kumar, S. et al. TimeTree 5: an expanded resource for species divergence times. Mol. Biol. Evol.39, msac174 (2022). PubMed PMC
Wright, T. F. et al. A multilocus molecular phylogeny of the parrots (Psittaciformes): support for a gondwanan origin during the cretaceous. Mol. Biol. Evol.25, 2141–2156 (2008). PubMed PMC
Smith, B. T. et al. Phylogenomic analysis of the parrots of the world distinguishes artifactual from biological sources of gene tree discordance. Syst. Biol.72, 228–241 (2023). PubMed
Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci.27, 14–25 (2018). PubMed PMC