Phenyl-Substituted Thiaboranes─Linked 2D and 3D Aromatics as Noncovalent Organic Framework Materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40202205
PubMed Central
PMC12015963
DOI
10.1021/acs.inorgchem.4c05457
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A series of 12-phenyl-closo-thiaboranes (12-(4-X-C6H4)-closo-1-SB11H10, where X = OMe (2), X = SMe (3), X = Ph (4), and X = NMe2 (5)) has been prepared. Except for 2, all compounds exhibit a chalcogen bond of thiaborane to the phenyl ring or the neighboring molecule as major supramolecular structural motif. 5, having the strongest (-12.47 kcal/mol) structure-making intermolecular interaction via noncovalent S···π(phenyl) chalcogen bond, was crystallized from different solvents in the form of various solvatopolymorphs. n-Hexane and diethyl ether can be removed from 5 easily upon the formation of a porous material with large cavities (up to 20.5% of the unit cell). This first stable and useful noncovalently bound organic framework material with an ultramicroporous structure exhibits a molecular sieve effect. The selective and repeatable adsorption of CO2 to the material crystallized from n-hexane was explained on the basis of cooperative and consecutive machine-like molecular interactions of quadrupolar CO2 molecule with B-H and amino groups inside rectangular cavities.
Zobrazit více v PubMed
Sels B. F.; Kustov L. M.. Zeolites and Zeolite-like Materials; Elsevier: Maarssen, 2016.
Čejka J.; Morris R. E.; Nachtigall P.. Zeolites in Catalysis: Properties and Applications; RSC: Croydon, UK, 2017.
Zhang H.; Samsudin I. b.; Jaenicke S.; Chuah G.-K. Zeolites in catalysis: sustainable synthesis and its impact on properties and applications. Catal. Sci. Technol. 2022, 12 (19), 6024–6039. 10.1039/D2CY01325H. DOI
Pérez-Botella E.; Valencia S.; Rey F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem. Rev. 2022, 122 (24), 17647–17695. 10.1021/acs.chemrev.2c00140. PubMed DOI PMC
Tian G.; Chen G.; Yang G.; Diao Z.; Bai R.; Han J.; Guan B.; Yu J. Construction of Metal/Zeolite Hybrid Nanoframe Reactors via in-Situ-Kinetics Transformations. ACS Cent. Sci. 2024, 10 (8), 1473–1480. 10.1021/acscentsci.4c00439. PubMed DOI PMC
Li Y.; Yu J. Emerging applications of zeolites in catalysis, separation and host–guest assembly. Nat. Rev. Mater. 2021, 6, 1156–1174. 10.1038/s41578-021-00347-3. DOI
Yaghi O. M.; Kalmutzki M. J.; Diercks C. S.. Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks; Wiley VCH: Weinheim, 2019.
Chen Z.; Jiang H.; Li M.; O’Keeffe M.; Eddaoudi M. Reticular chemistry 3.2: Typical minimal edge-transitive derived and related nets for the design and synthesis of metal–organic frameworks. Chem. Rev. 2020, 120 (16), 8039–8065. 10.1021/acs.chemrev.9b00648. PubMed DOI
Li X.; Chen K.; Guo R.; Wei Z. Ionic Liquids Functionalized MOFs for Adsorption. Chem. Rev. 2023, 123, 10432–10467. 10.1021/acs.chemrev.3c00248. PubMed DOI
Kitagawa S. Future porous materials. Acc. Chem. Res. 2017, 50 (3), 514–516. 10.1021/acs.accounts.6b00500. PubMed DOI
Geng K.; He T.; Liu R.; Dalapati S.; Tan K. T.; Li Z.; Tao S.; Gong Y.; Jiang Q.; Jiang D. Covalent Organic Frameworks: design, synthesis, and functions. Chem. Rev. 2020, 120 (16), 8814–8933. 10.1021/acs.chemrev.9b00550. PubMed DOI
Yin Y.; Zhang Y.; Zhou X.; Gui B.; Wang W.; Jiang W.; Zhang Y.-B.; Sun J.; Wang C. Ultrahigh–surface area covalent organic frameworks for methane adsorption. Science 2024, 386 (6722), 693–696. 10.1126/science.adr0936. PubMed DOI
Tian Y. J.; Deng C.; Zhao L.; Zou J.-S.; Wu X.-C.; Jia Y.; Zhang Z.-Y.; Zhang J.; Peng Y.-L.; Chen G.; Zaworotko M. J. Pore configuration control in hybrid azolate ultra-microporous frameworks for sieving propylene from propane. Nat. Chem. 2025, 17, 141–147. 10.1038/s41557-024-01672-0. PubMed DOI
Nguyen H. L.; Gropp C.; Yaghi O. M. Reticulating 1D ribbons into 2D covalent organic frameworks by imine and imide linkages. J. Am. Chem. Soc. 2020, 142 (6), 2771–2776. 10.1021/jacs.9b13971. PubMed DOI
Zhou Y.; Kan L.; Eubank J. F.; Li G.; Zhang L.; Liu Y. Self-assembly of two robust 3D supramolecular organic frameworks from a geometrically nonplanar molecule for high gas selectivity performance. Chem. Sci. 2019, 10 (26), 6565–6571. 10.1039/C9SC00290A. PubMed DOI PMC
Sholl D. S.; Lively R. P. Seven Chemical Separations to Change the World. Nature 2016, 532, 435–437. 10.1038/532435a. PubMed DOI
Ying Y.; Tong M.; Ning S.; Ravi S. K.; Peh S. B.; Tan S. C.; Pennycook S. J.; Zhao D. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. J. Am. Chem. Soc. 2020, 142 (9), 4472–4480. 10.1021/jacs.9b13825. PubMed DOI
Bae Y.-S.; Farha O. K.; Spokoyny A. M.; Mirkin C. A.; Hupp J. T.; Snurr R. Q. Carborane-based metal–organic frameworks as highly selective sorbents for CO2 over methane. Chem. Commun. 2008, 35 (35), 4135–4137. 10.1039/b805785k. PubMed DOI
Huang Y.-B.; Liang J.; Wang X.-S.; Cao R. Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chem. Soc. Rev. 2017, 46 (46), 126–157. 10.1039/C6CS00250A. PubMed DOI
Begum S.; Hassan Z.; Bräse S.; Tsotsalas M. Polymerization in MOF-confined nanospaces: tailored architectures, functions, and applications. Langmuir 2020, 36 (36), 10657–10673. 10.1021/acs.langmuir.0c01832. PubMed DOI
Lohse M. S.; Bein T. Covalent organic frameworks: structures, synthesis, and applications. Adv. Funct. Mater. 2018, 28, 1705553.10.1002/adfm.201705553. DOI
Lü J.; Cao R. Porous organic molecular frameworks with extrinsic porosity: a platform for carbon storage and separation. Angew. Chem., Int. Ed. 2016, 55 (33), 9474–9480. 10.1002/anie.201602116. PubMed DOI
Zhou Y.; Liu B.; Sun X.; Li J.; Li G.; Huo Q.; Liu Y. Self-assembly of homochiral porous supramolecular organic frameworks with significant CO2 capture and CO2/N2 selectivity. Cryst. Growth Des. 2017, 17 (12), 6653–6659. 10.1021/acs.cgd.7b01282. DOI
Ma D.; Li J.; Liu K.; Li B.; Li C.; Shi Z. Diionic multifunctional porous organic frameworks for efficient CO2 fixation under mild and co-catalyst free conditions. Green Chem. 2018, 20 (23), 5285–5291. 10.1039/C8GC01867G. DOI
Shi Z.; Tao Y.; Wu J.; Zhang C.; He H.; Long L.; Lee Y.; Li T.; Zhang Y.-B. Robust metal – triazolate frameworks for CO2 capture from flue gas. J. Am. Chem. Soc. 2020, 142 (6), 2750–2754. 10.1021/jacs.9b12879. PubMed DOI
Singh G.; Lee J.; Karakoti A.; Bahadur R.; Yi J.; Zhao D.; AlBahily K.; Vinu A. Emerging trends in porous materials for CO2 capture and conversion. Chem. Soc. Rev. 2020, 49 (13), 4360–4404. 10.1039/D0CS00075B. PubMed DOI
Wang C.; Lv Z.; Yang W.; Feng X.; Wang B. A rational design of functional porous frameworks for electrocatalytic CO2 reduction reaction. Chem. Soc. Rev. 2023, 52 (4), 1382–1427. 10.1039/D2CS00843B. PubMed DOI
Jones W. D. Carbon capture and conversion. J. Am. Chem. Soc. 2020, 142 (11), 4955–4957. 10.1021/jacs.0c02356. PubMed DOI
Stavila V.; Talin A. A.; Allendorf M. D. MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 2014, 43 (16), 5994–6010. 10.1039/C4CS00096J. PubMed DOI
Meng J.; Liu X.; Niu C.; Pang Q.; Li J.; Liu F.; Liu Z.; Mai L. Advances in metal-organic framework coatings: versatile synthesis and broad applications. Chem. Soc. Rev. 2020, 49 (10), 3142–3186. 10.1039/C9CS00806C. PubMed DOI
Ajdari F. B.; Kowsari E.; Shahrak M. N.; Ehsani A.; Kiaei Z.; Torkzaban H.; Ershadi M.; Eshkalak S. K.; Haddadi-Asl V.; Chinnappan A.; Ramakrishna S. A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coord. Chem. Rev. 2020, 422, 213441.10.1016/j.ccr.2020.213441. DOI
Li H.-Y.; Zhao S.-N.; Zang S.-Q.; Li J. Functional metal-organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 2020, 49 (17), 6364–6401. 10.1039/C9CS00778D. PubMed DOI
Cliffe M. J.; Mottillo C.; Stein R. S.; Bučar D.-K.; Friščić T. Accelerated aging: a low energy, solvent-free alternative to solvothermal and mechanochemical synthesis of metal–organic materials. Chem. Sci. 2012, 3 (8), 2495–2500. 10.1039/C2SC20344H. DOI
Okoro H. K.; Ayika S. O.; Ngila J. C.; Tella A. C. Rising profile on the use of metal–organic frameworks (MOFs) for the removal of heavy metals from the environment: an overview. Appl. Water Sci. 2018, 8 (6), 169.10.1007/s13201-018-0818-3. DOI
Wang X.; Xu W.; Gu J.; Yan X.; Chen Y.; Guo M.; Zhou G.; Tong S.; Ge M.; Liu Y.; Chen C. MOF-based fibrous membranes adsorb PM efficiently and capture toxic gases selectively. Nanoscale 2019, 11 (38), 17782–17790. 10.1039/C9NR05795A. PubMed DOI
McKinlay A. C.; Morris R. E.; Horcajada P.; Férey G.; Gref R.; Couvreur P.; Serre C. BioMOFs: metal–organic frameworks for biological and medical applications. Angew. Chem., Int. Ed. 2010, 49 (36), 6260–6266. 10.1002/anie.201000048. PubMed DOI
Riccò R.; Liang W.; Li S.; Gassensmith J. J.; Caruso F.; Doonan C.; Falcaro P. Metal–organic frameworks for cell and virus biology: a perspective. ACS Nano 2018, 12 (1), 13–23. 10.1021/acsnano.7b08056. PubMed DOI
Haynes W. M.CRC Handbook of Chemistry and Physics, 97th ed.; CRC Press: Boca Raton, FL: 2016.
Lin R.-B.; He Y.; Li P.; Wang H.; Zhou W. B.; Chen B. Multifunctional porous hydrogen-bonded organic framework materials. Chem. Soc. Rev. 2019, 48 (5), 1362–1389. 10.1039/C8CS00155C. PubMed DOI PMC
Shields C. E.; Wang X.; Fellowes T.; Clowes R.; Chen L.; Day G. M.; Slater A. G.; Ward J. W.; Little M. A.; Cooper A. I. Experimental confirmation of a predicted porous hydrogen-bonded organic framework. Angew. Chem., Int. Ed. 2023, 62 (34), e20230316710.1002/anie.202303167. PubMed DOI PMC
O’Shaughnessy M.; Glover J.; Hafizi R.; Barhi M.; Clowes R.; Chong S. Y.; Argent S. P.; Day G. M.; Cooper A. I. Porous isoreticular non-metal organic frameworks. Nature 2024, 630, 102–108. 10.1038/s41586-024-07353-9. PubMed DOI PMC
Meng D.; Yang J. L.; Xiao C.; Wang R.; Xing X.; Kocak O.; Aydin G.; Yavuz I.; Nuryyeva S.; Zhang L.; Liu G.; Li Z.; Yuan S.; Wang Z.-K.; Wei W.; Wang Z.; Houk K. N.; Yang Y. Noncovalent π-stacked robust topological organic Framework. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (34), 20397–20403. 10.1073/pnas.2010733117. PubMed DOI PMC
Zheng T.; Nöthling N.; Wang Z.; Mitschke B.; Leutzsch M.; List B. A solid noncovalent organic double-helix framework catalyzes asymmetric [6 + 4] cycloaddition. Science 2024, 385 (6710), 765–770. 10.1126/science.adp1127. PubMed DOI
Chen S.; Ju Y.; Yang Y.; Xiang F.; Yao Z.; Zhang H.; Li Y.; Zhang Y.; Xiang S.; Chen B.; Zhang Z. Multistate structures in a hydrogen-bonded polycatenation non-covalent organic framework with diverse resistive switching behaviors. Nat. Commun. 2024, 15, 298–308. 10.1038/s41467-023-44214-x. PubMed DOI PMC
Li Y.-L.; Alexandrov E. V.; Yin Q.; Li L.; Fang Z.-B.; Yuan W.; Proserpio D. M.; Liu T.-F. Record complexity in the polycatenation of three porous hydrogen-bonded organic frameworks with stepwise adsorption behaviors. J. Am. Chem. Soc. 2020, 142 (15), 7218–7224. 10.1021/jacs.0c02406. PubMed DOI
Fletcher S. P.; Dumur F.; Pollard M. M.; Feringa B. L. A Reversible, Unidirectional Molecular Rotary Motor Driven by Chemical Energy. Science 2005, 310 (5745), 80–82. 10.1126/science.1117090. PubMed DOI
Perera U. G.; Ample F.; Kersell H.; Zhang Y.; Vives G.; Echeverria J.; Grisolia M.; Rapenne G.; Joachim C.; Hla S.-W. Controlled clockwise and anticlockwise rotational switching of a molecular motor. Nat. Nanotechnol. 2013, 8, 46–51. 10.1038/nnano.2012.218. PubMed DOI
Schliwa M.; Woehlke G. Molecular motors. Nature 2003, 422 (6933), 759–765. 10.1038/nature01601. PubMed DOI
van Delden R.; ter Wiel M. K. J.; Pollard M. M.; Vicario J.; Koumura N.; Feringa B. L. Unidirectional molecular motor on a gold surface. Nature 2005, 437 (7063), 1337–1340. 10.1038/nature04127. PubMed DOI
Kelly T. R.; De Silva H.; Silva R. A. Unidirectional rotary motion in a molecular system. Nature 1999, 401 (6749), 150–152. 10.1038/43639. PubMed DOI
Simpson C. D.; Mattersteig G.; Martin K.; Gherghel L.; Bauer R. E.; Räder H. J.; Müllen K. Nanosized Molecular Propellers by Cyclodehydrogenation of Polyphenylene Dendrimers. J. Am. Chem. Soc. 2004, 126 (10), 3139–3147. 10.1021/ja036732j. PubMed DOI
Wang B.; Král P. Chemically Tunable Nanoscale Propellers of Liquids. Phys. Rev. Lett. 2007, 98, 266102.10.1103/PhysRevLett.98.266102. PubMed DOI
Marfavi A.; Kavianpour P.; Rendina L. M. Carboranes in drug discovery, chemical biology and molecular imaging. Nat. Rev. Chem 2022, 6 (7), 486–504. 10.1038/s41570-022-00400-x. PubMed DOI
Hey-Hawkins E.; Teixidor C. V.. Boron-based Compounds: Potential and Emerging Applications in Medicine; Wiley, 2018.
Yan J.; Yang W.; Zhang Q.; Yan Y. Introducing borane clusters into polymeric frameworks: architecture, synthesis, and applications. Chem. Commun. 2020, 56 (79), 11720–11734. 10.1039/D0CC04709K. PubMed DOI
Farha O. K.; Spokoyny A. M.; Mulfort K. L.; Hawthorne M. F.; Mirkin C. A.; Hupp J. T. Synthesis and Hydrogen Sorption Properties of Carborane Based Metal–Organic Framework Materials. J. Am. Chem. Soc. 2007, 129 (42), 12680–12681. 10.1021/ja076167a. PubMed DOI
Farha O. K.; Spokoyny A. M.; Mulfort K. L.; Galli S.; Hupp J. T.; Mirkin C. A. Gas-Sorption Properties of Cobalt(II)–Carborane-Based Coordination Polymers as a Function of Morphology. Small 2009, 5 (15), 1727–1731. 10.1002/smll.200900085. PubMed DOI
Huang S.-L.; Lin Y.-J.; Yu W.-B.; Jin G.-X. Porous Frameworks Based on Carborane–Ln2(CO2)6: Architecture Influenced by Lanthanide Contraction and Selective CO2 Capture. ChemPlusChem 2012, 77 (3), 141–147. 10.1002/cplu.201100083. DOI
Huang S.-L.; Weng L.-H.; Jin G.-X. Bottom-up synthesis of coordination polymers based on carborane backbones and Cu2(CO2)4 paddle-wheel: ligandmetathesis with metallotecons. Dalton Trans. 2012, 41 (38), 11657–11662. 10.1039/c2dt30708a. PubMed DOI
Spokoyny A. M.; Farha O. K.; Mulfort K. L.; Hupp J. T.; Mirkin C. A. Porosity tuning of carborane-based metal–organic frameworks (MOFs) via coordination chemistry and ligand design. Inorg. Chim. Acta 2010, 364 (1), 266–271. 10.1016/j.ica.2010.08.007. DOI
Kennedy R. D.; Krungleviciute V.; Clingerman D. J.; Mondloch J. E.; Peng Y.; Wilmer C. E.; Sarjeant A. A.; Snurr R. Q.; Hupp J. T.; Yildirim T.; Farha O. K.; Mirkin C. A. Carborane-Based Metal–Organic Framework with High Methane and Hydrogen Storage Capacities. Chem. Mater. 2013, 25 (17), 3539–3543. 10.1021/cm4020942. DOI
Boldog I.; Dušek M.; Jelínek T.; Švec P.; Ramos F. S. O.; Růžička A.; Bulánek R. Porous 10- and 12-Vertex (Bi)-P-Dicarba-Closo-Boranedicarboxylates of Cobalt and Their Gas Adsorptive Properties. Microporous Mesoporous Mater. 2018, 271, 284–294. 10.1016/j.micromeso.2018.05.031. DOI
Idrees K. B.; Kirlikovali K. O.; Setter C.; Xie H.; Brand H.; Lal B.; Sha F.; Smoljan C. S.; Wang X.; Islamoglu T.; Macreadie L. K.; Farha O. K. Robust Carborane-Based Metal–Organic Frameworks for Hexane Separation. J. Am. Chem. Soc. 2023, 145 (43), 23433–23441. 10.1021/jacs.3c04641. PubMed DOI
Gan L.; Chidambaram A.; Fonquernie P. G.; Light M. E.; Choquesillo-Lazarte D.; Huang H.; Solano E.; Fraile J.; Viñas C.; Teixidor F.; Navarro J. A. R.; Stylianou K. C.; Planas J. G. A Highly Water-Stable meta-Carborane-Based Copper Metal–Organic Framework for Efficient High-Temperature Butanol Separation. J. Am. Chem. Soc. 2020, 142 (18), 8299–8311. 10.1021/jacs.0c01008. PubMed DOI
Xu X.; Cui Q.; Chen H.; Huang N. Carborane-Based Three-Dimensional Covalent Organic Frameworks. J. Am. Chem. Soc. 2023, 145 (44), 24202–24209. 10.1021/jacs.3c08541. PubMed DOI
Fanfrlík J.; Přáda A.; Padělková Z.; Pecina A.; Macháček J.; Lepšík M.; Holub J.; Růžička A.; Hnyk D.; Hobza P. The dominant role of chalcogen bonding in the crystal packing of 2D/3D aromatics. Angew. Chem., Int. Ed. 2014, 53 (38), 10139–10142. 10.1002/anie.201405901. PubMed DOI
Melichar P.; Hnyk D.; Fanfrlík J. A. Systematic Examination of Classical and Multi-center Bonding in Heteroborane Clusters. Phys. Chem. Chem. Phys. 2018, 20 (7), 4666–4675. 10.1039/C7CP07422K. PubMed DOI
Vrána J.; Holub J.; Růžičková Z.; Fanfrlík J.; Hnyk D.; Růžička A. Investigation of Thiaborane closo–nido Conversion Pathways Promoted by N-Heterocyclic Carbenes. Inorg. Chem. 2019, 58 (4), 2471–2482. 10.1021/acs.inorgchem.8b03037. PubMed DOI
Chui S. S.-Y.; Low K.-H.; Lu J.; Roy V. . .; Chan S. L.-F.; Che C.-M. Homoleptic platinum(II) and palladium(II) organothiolates and phenylselenolates: solvothermal synthesis, structural determination, optical properties, and single-source precursors for PdSe and PdS nanocrystals. Chem.—Asian J. 2010, 5 (9), 2062–2074. 10.1002/asia.201000233. PubMed DOI
Kulmaczewski R.; Halcrow M. A. Structures and spin states of crystalline [Fe(NCS)2L2] and [FeL3]2+ complexes (L = an annelated 1,10-phenanthroline derivative). CrystEngComm 2016, 18 (14), 2570–2578. 10.1039/C6CE00163G. DOI
Bader R. F. W.Atoms in Molecules: A Quantum Theory; Clarendon Press: Oxford, 1990.
Johnson E. R.; Keinan S.; Mori-Sánchez P.; Contreras-García J.; Cohen A. J.; Yang W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132 (18), 6498–6506. 10.1021/ja100936w. PubMed DOI PMC
Bickelhaupt F. M.; Baerends E. J. Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry. Rev. Comput. Chem. 2000, 15, 1–86. 10.1002/9780470125922.ch1. DOI
Silvi B.; Savin A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 1994, 371, 683–686. 10.1038/371683a0. DOI
Weinhold F.; Landis C. R. Natural bond orbitals and extensions of localized bonding concepts. Chem. Educ. Res. Pract. 2001, 2 (2), 91–104. 10.1039/B1RP90011K. DOI
Spek A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. 2015, C71 (1), 9–18. 10.1107/S2053229614024929. PubMed DOI
Tome L. C.; Marrucho I. M. Ionic liquid-based materials: a platform to design engineered CO2 separation membranes. Chem. Soc. Rev. 2016, 45 (10), 2785–2824. 10.1039/C5CS00510H. PubMed DOI
Goeppert A.; Czaun M.; Surya Prakash G. K.; Olah G. A. Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere. Energy Environ. Sci. 2012, 5 (7), 7833–7853. 10.1039/C2EE21586A. DOI
Rochelle G. T. Amine scrubbing for CO2 capture. Science 2009, 325 (5948), 1652–1654. 10.1126/science.1176731. PubMed DOI
Chowdhury F. A.; Yamada H.; Higashii T.; Goto K.; Onoda M. CO2 capture by tertiary amine absorbents: a performance comparison study. Ind. Eng. Chem. Res. 2013, 52 (24), 8323–8331. 10.1021/ie400825u. DOI
Yu C.-H.; Huang C.-H.; Tan C.-S. A review of CO2 capture by absorption and adsorption. Aerosol Air Qual. Res. 2012, 12, 745–769. 10.4209/aaqr.2012.05.0132. DOI
Taylor R. G. D.; Carta M.; Bezzu C. G.; Walker J.; Msayib K. J.; Kariuki B. M.; McKeown N. B. Triptycene-Based Organic Molecules of Intrinsic Microporosity. Org. Lett. 2014, 16 (7), 1848–1851. 10.1021/ol500591q. PubMed DOI PMC
Eckstein B. J.; Brown L. C.; Noll B. C.; Moghadasnia M. P.; Balaich G. J.; McGuirk C. M. A Porous Chalcogen-Bonded Organic Framework. J. Am. Chem. Soc. 2021, 143 (48), 20207–20215. 10.1021/jacs.1c08642. PubMed DOI
Macháček J.; Plešek J.; Holub J.; Hnyk D.; Všetečka V.; Císařová I.; Kaupp M.; Štíbr B. New route to 1-thia-closo-dodecaborane(11), closo-1-SB11H11, and its halogenation reactions. The effect of the halogen on the dipole moments and the NMR spectra and the importance of spin–orbit coupling for the 11B chemical shifts. Dalton Trans. 2006, 8, 1024–1029. 10.1039/B512345C. PubMed DOI
Sheldrick G. M. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8. 10.1107/S2053273314026370. PubMed DOI PMC
Bruker S. V. A.APEX3 v2016.9-0; Bruker AXS Inc, 2016.
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.; Nakatsuji H.; Caricato M.; Li X.; Hratchian H. P.; Izmaylov A. F.; Bloino J.; Zheng G.; Sonnenberg J. L.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Montgomery J. A.; Peralta Jr. J. E.; Ogliaro F.; Bearpark M.; Heyd J. J.; Brothers E.; Kudin K. N.; Staroverov V. N.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Rega N.; Millam J. M.; Klene M.; Knox J. E.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Martin R. L.; Morokuma K.; Zakrzewski V. G.; Voth G. A.; Salvador P.; Dannenberg J. J.; Dapprich S.; Daniels A. D.; Farkas O.; Foresman J. B.; Ortiz J. V.; Cioslowski J.; Fox D. J.. Gaussian 09, Revision, D.01; Gaussian, Inc., 2009.
Flűkiger P.; Lűthi H. P.; Portmann S.; Weber J.. MOLEKEL 4.3; Swiss Center for Scientific Computing, 2000.
Portmann S.; Lűthi H. P. MOLEKEL: An Interactive Molecular Graphics Tool. Chimia 2000, 54, 766–770. 10.2533/chimia.2000.766. DOI
Jeziorski B.; Moszynski R.; Szalewicz K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes. Chem. Rev. 1994, 94, 1887–1930. 10.1021/cr00031a008. DOI
Parker T. M.; Burns L. A.; Parrish R. M.; Ryno A. G.; Sherrill C. D. Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies. J. Chem. Phys. 2014, 140 (9), 094106.10.1063/1.4867135. PubMed DOI
Hostaš J.; Řezáč J. Accurate DFT-D3 Calculations in a Small Basis Set. J. Chem. Theory Comput. 2017, 13 (8), 3575–3585. 10.1021/acs.jctc.7b00365. PubMed DOI
Ahlrichs R.; Bar M.; Haser M.; Horn H.; Kolmel C. Electronic structure calculations on workstation computers: The program system Turbomole. Chem. Phys. Lett. 1989, 162 (3), 165–169. 10.1016/0009-2614(89)85118-8. DOI
Turney J. M.; Simmonett A. C.; Parrish R. M.; Hohenstein E. G.; Evangelista F. A.; Fermann J. T.; Mintz B. J.; Burns L. A.; Wilke J. J.; Abrams M. L.; Russ N. J.; Leininger M. L.; Janssen C. L.; Seidl E. T.; Allen W. D.; Schaefer H. F.; King R. A.; Valeev E. F.; Sherrill C. D.; Crawford T. D. Psi4: an open-source ab initio electronic structure program. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2 (4), 556–565. 10.1002/wcms.93. DOI
Řezáč J. Cuby: An integrative framework for computational chemistry. J. Comput. Chem. 2016, 37, 1230–1237. 10.1002/jcc.24312. PubMed DOI
Case D. A.; Babin V.; Berryman J. T.; Betz R. M.; Cai Q.; Cerutti D. S.; Cheatham T.; Darden T.; Duke R. E.; Gohlke H.; Goetz A. W.; Gusarov S.; Homeyer N.; Janowski P.; Kaus J.; Kolossváry I.; Kovalenko A.; Lee T. S.; LeGrand S.; Luchko T.; Luo R.; Madej B.; Merz K. M.; Paesani F.; Roe D. R.; Roitberg A.; Sagui C.; Salomon-Ferrer R.; Seabra G.; Simmerling C. L.; Smith W.; Swails J.; Walker R. C.; Wang J.; Wolf R. M.; Wu X.; Kollman P. A.. Amber; University of California, 2014.
Pettersen E. F.; Goddard T. D.; Huang C. C.; Couch G. S.; Greenblatt D. M.; Meng E. C.; Ferrin T. E. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25 (13), 1605–1612. 10.1002/jcc.20084. PubMed DOI
Wang J.; Wolf R. M.; Caldwell J. W.; Kollman P. A.; Case D. A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25 (9), 1157–1174. 10.1002/jcc.20035. PubMed DOI
Fanfrlík J.; Pecina A.; Řezáč J.; Lepšík M.; Sárosi M. B.; Hnyk D.; Hobza P. Benchmark Data Sets of Boron Cluster Dihydrogen Bonding for the Validation of Approximate Computational Methods. ChemPhysChem 2020, 21 (23), 2599–2604. 10.1002/cphc.202000729. PubMed DOI
Bader R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91 (5), 893–928. 10.1021/cr00005a013. DOI
Kitaura K.; Morokuma K. A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation. Int. J. Quantum Chem. 1976, 10, 325–340. 10.1002/qua.560100211. DOI
Becke A. D.; Edgecombe K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403. 10.1063/1.458517. DOI
Contreras-García J.; Johnson E. R.; Keinan S.; Chaudret R.; Piquemal J.-P.; Beratan D. N.; Yang W. NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. J. Chem. Theory Comput. 2011, 7 (3), 625–632. 10.1021/ct100641a. PubMed DOI PMC
Adamo C.; Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. 10.1063/1.478522. DOI
Caldeweyher E.; Ehlert S.; Hansen A.; Neugebauer H.; Spicher S.; Bannwarth C.; Grimme S. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 2019, 150, 154122.10.1063/1.5090222. PubMed DOI
Weigend F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8 (9), 1057–1065. 10.1039/b515623h. PubMed DOI
Weigend F.; Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7 (18), 3297–3305. 10.1039/b508541a. PubMed DOI
Gomila R. M.; Frontera A.; Tiekink E. R. T. Te···I secondary-bonding interactions in crystals containing tellurium(II), tellurium(IV) and iodide atoms: supramolecular aggregation patterns, nature of the non-covalent interactions and energy considerations. CrystEngComm 2024, 26 (21), 2784–2795. 10.1039/D4CE00305E. DOI
Beccaria R.; Dhaka A.; Calabrese M.; Pizzi A.; Frontera A.; Resnati G. Chalcogen and Hydrogen Bond Team up in Driving Anion···Anion Self-Assembly. Chem.—Eur. J. 2024, 30, e20230364110.1002/chem.202303641. PubMed DOI
Humphrey W.; Dalke A.; Schulten K. V. M. D. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14, 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI
Lu T.; Chen F. Multiwfn A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. 10.1002/jcc.22885. PubMed DOI
Glendening E. D.; Landis C. R.; Weinhold F. Natural bond orbital methods. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 1–42. 10.1002/wcms.51. DOI
Glendening E. D.; Badenhoop J. K.; Reed A. E.; Carpenter J. E.; Bohmann J. A.; Morales C. M.; Karafiloglou P.; Landis C. R.; Weinhold F.. NBO 7.0; University of Wisconsin, 2018.