Benchmark Data Sets of Boron Cluster Dihydrogen Bonding for the Validation of Approximate Computational Methods

. 2020 Dec 02 ; 21 (23) : 2599-2604. [epub] 20201112

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33179424

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000729 ChemBioDrug
RVO 61388963 European Regional Development Fund (OP RDE)
19-17156S Czech Science Foundation
19-13905S Czech Science Foundation
DFG, SA 2902/2-1 German Research Foundation
e-Infrastructure CZ-LM2018140 The Ministry of Education, Youth and Sports
ChemBioDrug CZ.02.1.01/0.0/0.0/16_019/0000729 European Regional Development Fund (OP RDE)

The success of approximate computational methods, such as molecular mechanics, or dispersion-corrected density functional theory, in the description of non-covalent interactions relies on accurate parameterizations. Benchmark data sets are thus required. This area is well developed for organic molecules and biomolecules but practically non-existent for boron clusters, which have been gaining in importance in modern drug as well as material design. To fill this gap, we have introduced two data sets featuring the most common non-covalent interaction of boron clusters, the dihydrogen bond, and calculated reference interaction energies at the "golden standard" CCSD(T)/CBS level. The boron clusters studied interact with formamide, methanol, water and methane at various distances and in two geometrical arrangements. The performance of the tested approximate methods is variable and recommendations for further use are given.

Zobrazit více v PubMed

F. Jensen, Introduction to Computational Chemistry, 3rd ed.; Chichester West Sussex, UK; Hoboken, New Jersey: John Wiley & Sons, Ltd., 2017.

J. Řezáč, P. Hobza, Chem. Rev. 2016, 116, 5038-5071.

J. Řezáč, J. Fanfrlík, D. Salahub, P. Hobza, J. Chem. Theory Comput. 2009, 5, 1749-1760.

J. Řezáč, P. Hobza, J. Chem. Theory Comput. 2012, 8, 141-151.

Grimes, R. N. Carboranes, 3rd ed.; Academic Press: London, 2016.

Z. J. Lesnikowski, J. Med. Chem. 2016, 59, 7738-7758.

B. P. Dash, R. Satapathy, J. A. Maguire, N. S. Hosmane, New J. Chem. 2011, 35, 1955-1972.

M. Calvaresi, F. Zerbetto, J. Chem. Inf. Model. 2011, 51, 1882-1896.

R. Tiwari, K. Mahasenan, R. Pavlovicz, C. Li, W. Tjarks, J. Chem. Inf. Model. 2009, 49, 1581-1589.

R. Tiwari, K. Mahasenan, R. Pavlovicz, C. Li, W. Tjarks, J. Chem. Inf. Model. 2009, 49, 1581-1589.

M.-B. Sárosi, W. Neumann, T. P. Lybrand, E. Hey-Hawkins, J. Chem. Inf. Model. 2017, 57, 2056-2067.

A. Oda, K. Ohta, Y. Endo, S. Fukuyoshi, 37th Symposium on Chemical Information and Computer Sciences, Toyohashi, 2014. DOI: 10.11545/ciqs.2014.0_P02.

J. Fanfrlík, J. Brynda, J. Řezáč, P. Hobza, M. Lepšík, J. Phys. Chem. B 2008, 112, 15094-15102.

M. Couto, M. F. García, C. Alamón, M. Cabrera, P. Cabral, A. Merlino, F. Teixidor, H. Cerecetto, C. Viñas, Chem. Eur. J. 2018, 24, 3122-3126.

A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard III, W. M. Skiff, J. Am. Chem. Soc. 1992, 114, 10024-10035.

J. Fanfrlík, M. Lepšík, D. Horinek, Z. Havlas, P. Hobza, ChemPhysChem 2006, 7, 1100-1105.

D. A.Case, V. Babin, J. T. Berryman, R. M. Betz, Q. Cai, D. S. Cerutti, T. E. Cheatham, III, T. A. Darden, R. E. Duke, H. Gohlke, et al., 2014, AMBER 14, University of California, San Francisco.

P. Rezácová, J. Pokorná, J. Brynda, M. Kozísek, P. Cígler, M. Lepsík, J. Fanfrlík, J. Rezác, K. Grantz-Sasková, I. Sieglová, J. Plesek, V. Sícha, B. Grüner, H. Oberwinkler, J. Sedlácek, H. G. Kräusslich, P. Hobza, V. Král, J. Konvalinka, J. Med. Chem. 2009, 52, 7132-7141.

P. Srb, M. Svoboda, L. Benda, M. Lepšík, J. Tarábek, V. Šícha, B. Grüner, K. Grantz-Šašková, J. Brynda, P. Řezáčová, J. Konvalinka, V. Vevera, Phys. Chem. Chem. Phys. 2019, 21, 5661-5673.

M. Uchman, A. I. Abrikosov, M. Lepšík, M. Lund, P. Matějíček, Adv. Theory Simul. 2018, 1, 1700002.

Z. Gamba, B. M. Powell, J. Chem. Phys. 1996, 105, 2436-2440.

M.-B. Sárosi, T. P. Lybrand, J. Chem. Inf. Model. 2018, 58, 1990-1999.

D. C. Malaspina, C. Vinas, F. Teixidor, J. Faraudo, Angew. Chem. Int. Ed. 2020, 59, 3088-3092.

K. Karki, D. Gabel, D. Roccatano, Inorg. Chem. 2012, 51, 4894-4896.

J. J. P. Stewart, Int. J. Quantum Chem. 1996, 58, 133-146.

J. J. P. Stewart, J. Mol. Model. 2007, 13, 1173-1213.

S. Grimme, J. Antony, S. Ehrlich, H. A. Krieg, J. Chem. Phys. 2010, 132, 154104-154119.

B. King, Chem. Rev. 2001, 101, 1119-1152.

J. Poater, C. Viñas, I. Bennour, S. Escayola, M. Solà, F. Teixidor, J. Am. Chem. Soc. 2020, 142, 9396-9407.

P. Melichar, D. Hnyk, J. Fanfrlík, Phys. Chem. Chem. Phys. 2018, 20, 4666-4675.

T. Richardson, S. de Gala, R. H. Crabtree, P. E. M. Siegbahn, J. Am. Chem. Soc. 1995, 117, 12875-12876.

K. Melánová, J. Holub, J. Hynek, J. Fanfrlík, L. Beneš, P. Kutálek, A. Krejčová, D. Hnyk, H. Zima, Dalton Trans. 2018, 47, 11669-11679.

J. J. Pérez, R. Núñez, C. Viñas, R. Sillanpää, F. Teixidor, Eur. J. Inorg. Chem. 2010, 2385-2392.

P. Cígler, M. Kožíšek, P. Řezáčová, J. Brynda, Z. Otwinowski, J. Pokorná, J. Plešek, B. Grüner, L. Dolečková-Marešová, M. Máša, et al., Proc. Natl. Acad. Sci. USA 2005, 102, 15394-15399.

J. Brynda, P. Máder, V. Šícha, M. Fábry, K. Poncová, M. Bakardiev, B. Grüner, P. Cígler, P. Řezáčová, Angew. Chem. Int. Ed. 2013, 52, 13760-13763;

Angew. Chem. 2013, 125, 14005-14008.

A. Pecina, M. Lepšík, J. Řezáč, J. Brynda, P. Mader, P. Řezáčová, P. Hobza, J. Fanfrlík, J. Phys. Chem. B 2013, 117, 16096-16104.

J. Dvořanová, M. Kugler, J. Holub, V. Šícha, V. Das, J. Nekvinda, S. E. Anwar, M. Havránek, K. Pospíšilová, M. Fábry, et al., Eur. J. Med. Chem. 2020, 200, 112460.

K. A. Peterson, T. B. Adler, H.-J. Werner, J. Chem. Phys. 2008, 128, 084102.

P. Jurečka, P. Hobza, Chem. Phys. Lett. 2002, 365, 89-94.

S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553-566.

B. Jeziorski, R. Moszynski, K. Szalewicz, Chem. Rev. 1994, 94, 1887-1930.

T. M. Parker, L. A. Burns, R. M. Parrish, A. G. Ryno, C. D. Sherrill, J. Chem. Phys. 2014, 140, 094106.

J. J. P. Stewart, J. Mol. Model. 2013, 19, 1-32.

J. M. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, J. Comput. Chem. 2004, 25, 1157-1174.

C. I. Bayly, P. Cieplak, W. D. Cornell, P. A. Kollman, J. Phys. Chem. 1993, 97, 10269-10280.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al., Gaussian 09, Revision D.1; Gaussian, Inc.: Wallingford, CT, 2009.

R. Ahlrichs, M. Bar, M. Haser, H. Horn, C. Kolmel, Chem. Phys. Lett. 1989, 162, 165-169.

R. M. Parrish, L. A. Burns, D. G. A. Smith, A. C. Simmonett, A. E. DePrince, E. G. Hohenstein, U. Bozkaya, A. Y. Sokolov, R. D. Remigio, R. M. Richard, et al., J. Chem. Theory Comput. 2017, 13, 3185-3197.

MOPAC2016, J. J. P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA, HTTP://OpenMOPAC.net, 2016.

J. Řezáč, Cuby - Ruby Framework for Computational Chemistry, Version 4, http://cuby4.molecular.cz.

J. Řezáč, J. Comput. Chem. 2016, 37, 1230-1237.

T. Schaper, W. Preetz, Inorg. Chem. 1998, 37, 363-365.

J. F. Ditter, Inorg. Chem. 1968, 7, 1748-1754.

X. G. Zhou, Z. E. Huang, R. F. Cai, L. X. Zhang, X. Y. Huang, J. Organomet. Chem. 1998, 101-112.

P. R. Schleyer, K. Najafian, Inorg. Chem. 1998, 37, 3454-3470.

J. Fanfrlík, A. Pecina, J. Řezáč, R. Sedlak, D. Hnyk, M. Lepšík, P. Hobza, Phys. Chem. Chem. Phys. 2017, 19, 18194-18200.

Y. Endo, K. Yamamoto, H. Kagechika, Bioorg. Med. Chem. Lett. 2003, 13, 4089-4092.

J. L. Fauchère, K. Q. Do, P. Y. C. Jow, C. Hansch, Experientia 1980, 36, 1203-1204.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Phenyl-Substituted Thiaboranes─Linked 2D and 3D Aromatics as Noncovalent Organic Framework Materials

. 2025 Apr 21 ; 64 (15) : 7377-7387. [epub] 20250409

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...