Genomic regions of current low hybridisation mark long-term barriers to gene flow in scarce swallowtail butterflies
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40209170
PubMed Central
PMC12040345
DOI
10.1371/journal.pgen.1011655
PII: PGENETICS-D-24-00612
Knihovny.cz E-zdroje
- MeSH
- fylogeneze MeSH
- genom hmyzu * MeSH
- genomika MeSH
- hybridizace genetická * MeSH
- motýli * genetika klasifikace MeSH
- reprodukční izolace MeSH
- sekvenování celého genomu MeSH
- tok genů * genetika MeSH
- vznik druhů (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Many closely related species continue to hybridise after millions of generations of divergence. However, the extent to which current patterning in hybrid zones connects back to the speciation process remains unclear: does evidence for current multilocus barriers support the hypothesis of speciation due to multilocus divergence? We analyse whole-genome sequencing data to investigate the speciation history of the scarce swallowtails Iphiclidespodalirius and I . feisthamelii, which abut at a narrow ( ∼ 25 km) contact zone north of the Pyrenees. We first quantify the heterogeneity of effective migration rate under a model of isolation with migration, using genomes sampled across the range to identify long-term barriers to gene flow. Secondly, we investigate the recent ancestry of individuals from the hybrid zone using genome polarisation and estimate the coupling coefficient under a model of a multilocus barrier. We infer a low rate of long-term gene flow from I . feisthamelii into I . podalirius - the direction of which matches the admixture across the hybrid zone - and complete reproductive isolation across ≈ 33% of the genome. Our contrast of recent and long-term gene flow shows that regions of low recent hybridisation are indeed enriched for long-term barriers which maintain divergence between these hybridising sister species. This finding paves the way for future analysis of the evolution of reproductive isolation along the speciation continuum.
Institut de Biologia Evolutiva Barcelona Spain
Institute of Ecology and Evolution The University of Edinburgh Edinburgh United Kingdom
Institute of Vertebrate Biology Academy of Sciences of the Czech Republic Brno Czech Republic
Zobrazit více v PubMed
Campbell C, Poelstra J, Yoder A. What is speciation genomics? The roles of ecology, gene flow, and genomic architecture in the formation of species. Biol J Linnean Soc. 2018;124(4):561–83.
Bush GL. Sympatric speciation in animals: new wine in old bottles. Trends Ecol Evol 1994;9(8):285–8. doi: 10.1016/0169-5347(94)90031-0 PubMed DOI
Dieckmann U, Doebeli M. On the origin of species by sympatric speciation. Nature 1999;400(6742):354–7. doi: 10.1038/22521 PubMed DOI
Nosil P. Speciation with gene flow could be common. Mol Ecol 2008;17(9):2103–6. doi: 10.1111/j.1365-294X.2008.03715.x PubMed DOI
Feder JL, Egan SP, Nosil P. The genomics of speciation-with-gene-flow. Trends Genet 2012;28(7):342–50. doi: 10.1016/j.tig.2012.03.009 PubMed DOI
Taylor C, Touré YT, Carnahan J, Norris DE, Dolo G, Traoré SF, et al.. Gene flow among populations of the malaria vector, Anopheles gambiae, in Mali, West Africa. Genetics 2001;157(2):743–50. doi: 10.1093/genetics/157.2.743 PubMed DOI PMC
Wang RL, Wakeley J, Hey J. Gene flow and natural selection in the origin of Drosophila pseudoobscura and close relatives. Genetics 1997;147(3):1091–106. doi: 10.1093/genetics/147.3.1091 PubMed DOI PMC
Martin SH, Dasmahapatra KK, Nadeau NJ, Salazar C, Walters JR, Simpson F, et al.. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res 2013;23(11):1817–28. doi: 10.1101/gr.159426.113 PubMed DOI PMC
Roux C, Fraïsse C, Romiguier J, Anciaux Y, Galtier N, Bierne N. Shedding light on the grey zone of speciation along a continuum of genomic divergence. PLoS Biol 2016;14(12):e2000234. doi: 10.1371/journal.pbio.2000234 PubMed DOI PMC
Taylor SA, Larson EL. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat Ecol Evol 2019;3(2):170–7. doi: 10.1038/s41559-018-0777-y PubMed DOI
Mallet J. Hybrid zones of Heliconius butterflies in Panama and the stability and movement of warning colour clines. Heredity 1986;56(2):191–202. doi: 10.1038/hdy.1986.31 DOI
Harrison R. Hybrid zones: windows on evolutionary process. Oxford Surv Evolution Biol. 1990;7:69–128.
Rieseberg LH, Archer MA, Wayne RK. Transgressive segregation, adaptation and speciation. Heredity (Edinb). 1999;83(Pt 4):363–72. doi: 10.1038/sj.hdy.6886170 PubMed DOI
Sankararaman S, Mallick S, Dannemann M, Prüfer K, Kelso J, Pääbo S, et al.. The genomic landscape of Neanderthal ancestry in present-day humans. Nature 2014;507(7492):354–7. doi: 10.1038/nature12961 PubMed DOI PMC
Stankowski S, Shipilina D, Westram A. Hybrid zones. eLS. 2021;2:1–12.
Drès M, Mallet J. Host races in plant-feeding insects and their importance in sympatric speciation. Philos Trans R Soc Lond B Biol Sci 2002;357(1420):471–92. doi: 10.1098/rstb.2002.1059 PubMed DOI PMC
Stankowski S, Ravinet M. Defining the speciation continuum. Evolution 2021;75(6):1256–73. doi: 10.1111/evo.14215 PubMed DOI
Hewitt GM. Hybrid zones-natural laboratories for evolutionary studies. Trends Ecol Evol 1988;3(7):158–67. doi: 10.1016/0169-5347(88)90033-X PubMed DOI
Döttinger CA, Steige KA, Hahn V, Bachteler K, Leiser WL, Zhu X, et al.. Unravelling the genetic architecture of soybean tofu quality traits. Mol Breed 2025;45(1):8. doi: 10.1007/s11032-024-01529-x PubMed DOI PMC
Ebdon S, Laetsch DR, Dapporto L, Hayward A, Ritchie MG, Dinca V, et al.. The Pleistocene species pump past its prime: Evidence from European butterfly sister species. Mol Ecol 2021;30(14):3575–89. doi: 10.1111/mec.15981 PubMed DOI
Hunt WG, Selander RK. Biochemical genetics of hybridisation in European house mice. Heredity (Edinb) 1973;31(1):11–33. doi: 10.1038/hdy.1973.56 PubMed DOI
Nosil P, Funk DJ, Ortiz-Barrientos D. Divergent selection and heterogeneous genomic divergence. Mol Ecol 2009;18(3):375–402. doi: 10.1111/j.1365-294X.2008.03946.x PubMed DOI
Lenormand T. Gene flow and the limits to natural selection. Trends Ecol Evol 2002;17(4):183–9. doi: 10.1016/s0169-5347(02)02497-7 DOI
Kruuk LE, Baird SJ, Gale KS, Barton NH. A comparison of multilocus clines maintained by environmental adaptation or by selection against hybrids. Genetics 1999;153(4):1959–71. doi: 10.1093/genetics/153.4.1959 PubMed DOI PMC
Bank C, Bürger R, Hermisson J. The limits to parapatric speciation: Dobzhansky-Muller incompatibilities in a continent-island model. Genetics 2012;191(3):845–63. doi: 10.1534/genetics.111.137513 PubMed DOI PMC
Payseur BA, Rieseberg LH. A genomic perspective on hybridization and speciation. Molecul Ecol. 2016;25(11):2337–60. PubMed PMC
Barton N, Bengtsson BO. The barrier to genetic exchange between hybridising populations. Heredity (Edinb). 1986;57(Pt 3):357–76. doi: 10.1038/hdy.1986.135 PubMed DOI
Yang W, Feiner N, Laakkonen H, Sacchi R, Zuffi MAL, Scali S, et al.. Spatial variation in gene flow across a hybrid zone reveals causes of reproductive isolation and asymmetric introgression in wall lizards. Evolution 2020;74(7):1289–300. doi: 10.1111/evo.14001 PubMed DOI
Macholán M, Baird S, Dufková P, Munclinger P, Bímová B, Piálek J. Assessing multilocus introgression patterns: a case study on the mouse X chromosome in central Europe. Evolution. 2011;65(5):1428–46. PubMed
Bhattacharyya T, Reifova R, Gregorova S, Simecek P, Gergelits V, Mistrik M, et al.. X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids. PLoS Genet 2014;10(2):e1004088. doi: 10.1371/journal.pgen.1004088 PubMed DOI PMC
Hedrick PW. Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol Ecol 2013;22(18):4606–18. doi: 10.1111/mec.12415 PubMed DOI
Arnold ML, Sapir Y, Martin NH. Review. Genetic exchange and the origin of adaptations: prokaryotes to primates. Philos Trans R Soc Lond B Biol Sci 2008;363(1505):2813–20. doi: 10.1098/rstb.2008.0021 PubMed DOI PMC
Racimo F, Sankararaman S, Nielsen R, Huerta-Sánchez E. Evidence for archaic adaptive introgression in humans. Nat Rev Genet 2015;16(6):359–71. doi: 10.1038/nrg3936 PubMed DOI PMC
Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, et al.. Hybridization and speciation. J Evol Biol 2013;26(2):229–46. doi: 10.1111/j.1420-9101.2012.02599.x PubMed DOI
Ravinet M, Faria R, Butlin RK, Galindo J, Bierne N, Rafajlović M, et al.. Interpreting the genomic landscape of speciation: a road map for finding barriers to gene flow. J Evol Biol 2017;30(8):1450–77. doi: 10.1111/jeb.13047 PubMed DOI
Coyne JA, Orr HA. Patterns of speciation in drosophila. Evolution 1989;43(2):362–81. doi: 10.1111/j.1558-5646.1989.tb04233.x PubMed DOI
Frayer ME, Payseur BA. Do genetic loci that cause reproductive isolation in the lab inhibit gene flow in nature?. Evolution 2024;78(6):1025–38. doi: 10.1093/evolut/qpae044 PubMed DOI PMC
Harrison RG, Larson EL. Heterogeneous genome divergence, differential introgression, and the origin and structure of hybrid zones. Mol Ecol 2016;25(11):2454–66. doi: 10.1111/mec.13582 PubMed DOI PMC
Gompert Z, Lucas LK, Nice CC, Fordyce JA, Forister ML, Buerkle CA. Genomic regions with a history of divergent selection affect fitness of hybrids between two butterfly species. Evolution 2012;66(7):2167–81. doi: 10.1111/j.1558-5646.2012.01587.x PubMed DOI
Parchman TL, Gompert Z, Braun MJ, Brumfield RT, McDonald DB, Uy JAC, et al.. The genomic consequences of adaptive divergence and reproductive isolation between species of manakins. Mol Ecol 2013;22(12):3304–17. doi: 10.1111/mec.12201 PubMed DOI
Gosset CC, Bierne N. Differential introgression from a sister species explains high F(ST) outlier loci within a mussel species. J Evol Biol 2013;26(1):14–26. doi: 10.1111/jeb.12046 PubMed DOI
Taylor SA, Curry RL, White TA, Ferretti V, Lovette I. Spatiotemporally consistent genomic signatures of reproductive isolation in a moving hybrid zone. Evolution 2014;68(11):3066–81. doi: 10.1111/evo.12510 PubMed DOI
Hamilton JA, Lexer C, Aitken SN. Genomic and phenotypic architecture of a spruce hybrid zone (Picea sitchensis × P. glauca). Mol Ecol 2013;22(3):827–41. doi: 10.1111/mec.12007 PubMed DOI
Hamilton JA, Lexer C, Aitken SN. Differential introgression reveals candidate genes for selection across a spruce (Picea sitchensis × P. glauca) hybrid zone. New Phytol 2013;197(3):927–38. doi: 10.1111/nph.12055 PubMed DOI
Larson EL, Andrés JA, Bogdanowicz SM, Harrison RG. Differential introgression in a mosaic hybrid zone reveals candidate barrier genes. Evolution 2013;67(12):3653–61. doi: 10.1111/evo.12205 PubMed DOI
Larson EL, White TA, Ross CL, Harrison RG. Gene flow and the maintenance of species boundaries. Mol Ecol 2014;23(7):1668–78. doi: 10.1111/mec.12601 PubMed DOI
Luttikhuizen PC, Drent J, Peijnenburg KTCA, van der Veer HW, Johannesson K. Genetic architecture in a marine hybrid zone: comparing outlier detection and genomic clines analysis in the bivalve Macoma balthica. Mol Ecol 2012;21(12):3048–61. doi: 10.1111/j.1365-294X.2012.05586.x PubMed DOI
Saarman NP, Pogson GH. Introgression between invasive and native blue mussels (genus Mytilus) in the central California hybrid zone. Mol Ecol 2015;24(18):4723–38. doi: 10.1111/mec.13340 PubMed DOI
Scordato ESC, Wilkins MR, Semenov G, Rubtsov AS, Kane NC, Safran RJ. Genomic variation across two barn swallow hybrid zones reveals traits associated with divergence in sympatry and allopatry. Mol Ecol 2017;26(20):5676–91. doi: 10.1111/mec.14276 PubMed DOI
Pruisscher P, Nylin S, Gotthard K, Wheat CW. Genetic variation underlying local adaptation of diapause induction along a cline in a butterfly. Mol Ecol. 2018:10.1111/mec.14829. doi: 10.1111/mec.14829 PubMed DOI
Wang S, Rohwer S, de Zwaan DR, Toews DPL, Lovette IJ, Mackenzie J, et al.. Selection on a small genomic region underpins differentiation in multiple color traits between two warbler species. Evol Lett 2020;4(6):502–15. doi: 10.1002/evl3.198 PubMed DOI PMC
Teeter K, Payseur B, Harris L, Bakewell M, Thibodeau L, O’Brien J. Genome-wide patterns of gene flow across a house mouse hybrid zone. Genome Research. 2008;18(1):67–76. PubMed PMC
Kingston SE, Parchman TL, Gompert Z, Buerkle CA, Braun MJ. Heterogeneity and concordance in locus-specific differentiation and introgression between species of towhees. J Evol Biol 2017;30(3):474–85. doi: 10.1111/jeb.13033 PubMed DOI
Westram AM, Faria R, Johannesson K, Butlin R. Using replicate hybrid zones to understand the genomic basis of adaptive divergence. Mol Ecol 2021;30(15):3797–814. doi: 10.1111/mec.15861 PubMed DOI
Lundberg M, Liedvogel M, Larson K, Sigeman H, Grahn M, Wright A. Genetic differences between willow warbler migratory phenotypes are few and cluster in large haplotype blocks. Evol Lett. 2017;1(3):155–68. PubMed PMC
Mérot C, Berdan EL, Cayuela H, Djambazian H, Ferchaud A-L, Laporte M, et al.. Locally adaptive inversions modulate genetic variation at different geographic scales in a seaweed fly. Mol Biol Evol 2021;38(9):3953–71. doi: 10.1093/molbev/msab143 PubMed DOI PMC
Riquet F, Liautard-Haag C, Woodall L, Bouza C, Louisy P, Hamer B, et al.. Parallel pattern of differentiation at a genomic island shared between clinal and mosaic hybrid zones in a complex of cryptic seahorse lineages. Evolution 2019;73(4):817–35. doi: 10.1111/evo.13696 PubMed DOI
Meyer L, Barry P, Riquet F, Foote A, Der Sarkissian C, Cunha RL, et al.. Divergence and gene flow history at two large chromosomal inversions underlying ecotype differentiation in the long-snouted seahorse. Mol Ecol 2024;33(24):e17277. doi: 10.1111/mec.17277 PubMed DOI
Godart JB. Histoire naturelle des épidoptères ou papillons de France, vol. 15. Mequignon-Marvis fils; 1842.
Coutsis J, Van Oorschot H. Differences in the male and female genitalia between Iphiclides podalirius and Iphiclides feisthamelii, further supporting species status for the latter (Lepidoptera: Papilionidae). Phegea. 2011;39(1):12–22.
Gaunet A, Dinca V, Dapporto L, Montagud S, Voda R, Schär S. Two consecutive Wolbachia-mediated mitochondrial introgressions obscure taxonomy in Palearctic swallowtail butterflies (Lepidoptera, Papilionidae). Zoologica Scripta. 2019. doi: 10.1111/zsc.12355 DOI
Wiemers M. Chromosome differentiation and the radiation of the butterfly subgenus Agrodiaetus (Lepidoptera: Lycaenidae: Polyommatus): a molecular phylogenetic approach. Bonn Bonn: Univ. Diss., 2003.
Wiemers M, Fiedler K. Does the DNA barcoding gap exist? - a case study in blue butterflies (Lepidoptera: Lycaenidae). Front Zool. 2007;4:8. doi: 10.1186/1742-9994-4-8 PubMed DOI PMC
Wiemers M, Gottsberger B. Discordant patterns of mitochondrial and nuclear differentiation in the Scarce Swallowtail Iphiclides podalirius feisthamelii (Duponchel, 1832) (Lepidoptera: Papilionidae). Entomologische Zeitschrift. 2010;120(3):111–5.
Descimon H, Mallet J. Bad species. Ecol Butterflies Europe. 2009;500(C):219.
Lafranchis T, Delmas S, Mazel R. Le contact Iphiclides feisthamelii - I. podalirius. Statut de ces deux taxons (Lepidoptera, Papilionidae). Revue de l’Association Roussillonnaise d’Entomologie. 2015;24(3):111–32.
Laetsch DR, Bisschop G, Martin SH, Aeschbacher S, Setter D, Lohse K. Demographically explicit scans for barriers to gene flow using gIMble. PLoS Genet 2023;19(10):e1010999. doi: 10.1371/journal.pgen.1010999 PubMed DOI PMC
Baird SJE, Petružela J, Jaroň I, Škrabánek P, Martínková N. Genome polarisation for detecting barriers to geneflow. Methods Ecol Evol 2022;14(2):512–28. doi: 10.1111/2041-210x.14010 DOI
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al.. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81(3):559–75. doi: 10.1086/519795 PubMed DOI PMC
Schumer M, Xu C, Powell DL, Durvasula A, Skov L, Holland C, et al.. Natural selection interacts with recombination to shape the evolution of hybrid genomes. Science 2018;360(6389):656–60. doi: 10.1126/science.aar3684 PubMed DOI PMC
Yassin A, Debat V, Bastide H, Gidaszewski N, David JR, Pool JE. Recurrent specialization on a toxic fruit in an island Drosophila population. Proc Natl Acad Sci U S A 2016;113(17):4771–6. doi: 10.1073/pnas.1522559113 PubMed DOI PMC
Nouhaud P, Martin SH, Portinha B, Sousa VC, Kulmuni J. Rapid and predictable genome evolution across three hybrid ant populations. PLoS Biol 2022;20(12):e3001914. doi: 10.1371/journal.pbio.3001914 PubMed DOI PMC
Barton NH, Hewitt GM. Analysis of hybrid zones. Annu Rev Ecol Syst 1985;16(1):113–48. doi: 10.1146/annurev.es.16.110185.000553 DOI
Mather K. Crossing‐over. Biol Rev 1938;13(3):252–92. doi: 10.1111/j.1469-185x.1938.tb00516.x DOI
Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos Trans R Soc Lond B Biol Sci 2017;372(1736):20160455. doi: 10.1098/rstb.2016.0455 PubMed DOI PMC
Martin SH, Davey JW, Salazar C, Jiggins CD. Recombination rate variation shapes barriers to introgression across butterfly genomes. PLoS Biol 2019;17(2):e2006288. doi: 10.1371/journal.pbio.2006288 PubMed DOI PMC
Näsvall K, Boman J, Höök L, Vila R, Wiklund C, Backström N. Nascent evolution of recombination rate differences as a consequence of chromosomal rearrangements. PLoS Genet 2023;19(8):e1010717. doi: 10.1371/journal.pgen.1010717 PubMed DOI PMC
Meier JI, Salazar PA, Kučka M, Davies RW, Dréau A, Aldás I, et al.. Haplotype tagging reveals parallel formation of hybrid races in two butterfly species. Proc Natl Acad Sci U S A 2021;118(25):e2015005118. doi: 10.1073/pnas.2015005118 PubMed DOI PMC
Iasi L, Chintalapati M, Skov L, Bossoma Mesa A, Hajdinjak M, Peter B. Neandertal ancestry through time: Insights from genomes of ancient and present-day humans. bioRxiv. 2024:2024–05. PubMed
Saarman NP, Opiro R, Hyseni C, Echodu R, Opiyo EA, Dion K, et al.. The population genomics of multiple tsetse fly (Glossina fuscipes fuscipes) admixture zones in Uganda. Mol Ecol 2019;28(1):66–85. doi: 10.1111/mec.14957 PubMed DOI PMC
Gompert Z, Mandeville EG, Buerkle CA. Analysis of population genomic data from hybrid zones. Annu Rev Ecol Evol Syst 2017;48(1):207–29. doi: 10.1146/annurev-ecolsys-110316-022652 DOI
Charlesworth B, Coyne JA, Barton NH. The relative rates of evolution of sex chromosomes and autosomes. Am Naturalist 1987;130(1):113–46. doi: 10.1086/284701 DOI
Mank JE, Nam K, Ellegren H. Faster-Z evolution is predominantly due to genetic drift. Mol Biol Evol 2010;27(3):661–70. doi: 10.1093/molbev/msp282 PubMed DOI
Bachtrog D, Mahajan S, Bracewell R. Massive gene amplification on a recently formed Drosophila Y chromosome. Nat Ecol Evol 2019;3(11):1587–97. doi: 10.1038/s41559-019-1009-9 PubMed DOI PMC
Turelli M, Orr HA. The dominance theory of Haldane’s rule. Genetics 1995;140(1):389–402. doi: 10.1093/genetics/140.1.389 PubMed DOI PMC
Barton NH, Gale KS. Genetic analysis of hybrid zones. In: Hybrid zones and the evolutionary process. In: Hybrid zones and the evolutionary process; 1993. p. 13–13. doi: 10.1093/oso/9780195069174.003.0002 DOI
Hvala JA, Frayer ME, Payseur BA. Signatures of hybridization and speciation in genomic patterns of ancestry. Evolution 2018;72(8):1540–52. doi: 10.1111/evo.13509 PubMed DOI PMC
Barton NH. Multilocus clines. Evolution 1983;37(3):454–71. doi: 10.1111/j.1558-5646.1983.tb05563.x PubMed DOI
Baird SJE. A simulation study of multilocus clines. Evolution 1995;49(6):1038–45. doi: 10.1111/j.1558-5646.1995.tb04431.x PubMed DOI
Esri. “World Hillshade” [basemap]. Scale Not Given. “Elevation/World Hillshade (MapServer)’’; 2024. https://server.arcgisonline.com/arcgis/rest/services/Elevation/World_Hillshade/MapServer
Gower G, Ragsdale AP, Bisschop G, Gutenkunst RN, Hartfield M, Noskova E, et al.. Demes: a standard format for demographic models. Genetics. 2022;222(3):iyac131. doi: 10.1093/genetics/iyac131 PubMed DOI PMC
Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. Robust demographic inference from genomic and SNP data. PLoS Genet 2013;9(10):e1003905. doi: 10.1371/journal.pgen.1003905 PubMed DOI PMC
Aeschbacher S, Selby JP, Willis JH, Coop G. Population-genomic inference of the strength and timing of selection against gene flow. Proc Natl Acad Sci U S A 2017;114(27):7061–6. doi: 10.1073/pnas.1616755114 PubMed DOI PMC
Mondal M, Bertranpetit J, Lao O. Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania. Nat Commun 2019;10(1):246. doi: 10.1038/s41467-018-08089-7 PubMed DOI PMC
Fraïsse C, Popovic I, Mazoyer C, Spataro B, Delmotte S, Romiguier J, et al.. DILS: demographic inferences with linked selection by using ABC. Mol Ecol Resour 2021;21(8):2629–44. doi: 10.1111/1755-0998.13323 PubMed DOI
Buggs RJA. Empirical study of hybrid zone movement. Heredity (Edinb) 2007;99(3):301–12. doi: 10.1038/sj.hdy.6800997 PubMed DOI
Hagberg L, Celemín E, Irisarri I, Hawlitschek O, Bella J, Mott T. Extensive introgression at late stages of species formation: insights from grasshopper hybrid zones. Molecul Ecol. 2022;31(8):2384–99. PubMed
Turner LM, Harr B. Genome-wide mapping in a house mouse hybrid zone reveals hybrid sterility loci and Dobzhansky-Muller interactions. Elife. 2014;3:e02504. doi: 10.7554/eLife.02504 PubMed DOI PMC
Poikela NP, Laetsch DR, Kankare M, Hoikkala A, Lohse K. Experimental introgression in Drosophila: asymmetric postzygotic isolation associated with chromosomal inversions and an incompatibility locus on the X chromosome. bioRxiv. 2022. PubMed PMC
Mailund T, Halager AE, Westergaard M, Dutheil JY, Munch K, Andersen LN, et al.. A new isolation with migration model along complete genomes infers very different divergence processes among closely related great ape species. PLoS Genet 2012;8(12):e1003125. doi: 10.1371/journal.pgen.1003125 PubMed DOI PMC
Capblancq T, Mavárez J, Rioux D, Després L. Speciation with gene flow: evidence from a complex of alpine butterflies (Coenonympha, Satyridae). Ecol Evol 2019;9(11):6444–57. doi: 10.1002/ece3.5220 PubMed DOI PMC
Mackintosh A, Vila R, Laetsch DR, Hayward A, Martin SH, Lohse K. Chromosome fissions and fusions act as barriers to gene flow between brenthis fritillary butterflies. Mol Biol Evol. 2023;40(3):msad043. doi: 10.1093/molbev/msad043 PubMed DOI PMC
Hirase S, Yamasaki YY, Sekino M, Nishisako M, Ikeda M, Hara M, et al.. Genomic evidence for speciation with gene flow in broadcast spawning marine invertebrates. Mol Biol Evol 2021;38(11):4683–99. doi: 10.1093/molbev/msab194 PubMed DOI PMC
Papadopulos AST, Baker WJ, Crayn D, Butlin RK, Kynast RG, Hutton I, et al.. Speciation with gene flow on Lord Howe Island. Proc Natl Acad Sci U S A 2011;108(32):13188–93. doi: 10.1073/pnas.1106085108 PubMed DOI PMC
Reifová R, Majerová V, Reif J, Ahola M, Lindholm A, Procházka P. Patterns of gene flow and selection across multiple species of Acrocephalus warblers: footprints of parallel selection on the Z chromosome. BMC Evol Biol 2016;16(1):130. doi: 10.1186/s12862-016-0692-2 PubMed DOI PMC
Garrigan D, Kingan SB, Geneva AJ, Andolfatto P, Clark AG, Thornton KR, et al.. Genome sequencing reveals complex speciation in the Drosophila simulans clade. Genome Res 2012;22(8):1499–511. doi: 10.1101/gr.130922.111 PubMed DOI PMC
Harris K, Nielsen R. The genetic cost of neanderthal introgression. Genetics 2016;203(2):881–91. doi: 10.1534/genetics.116.186890 PubMed DOI PMC
Nadeau NJ, Ruiz M, Salazar P, Counterman B, Medina JA, Ortiz-Zuazaga H, et al.. Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato. Genome Res 2014;24(8):1316–33. doi: 10.1101/gr.169292.113 PubMed DOI PMC
Johnson EA, Miyanishi K. Testing the assumptions of chronosequences in succession. Ecol Lett 2008;11(5):419–31. doi: 10.1111/j.1461-0248.2008.01173.x PubMed DOI
Mérot C, Salazar C, Merrill RM, Jiggins CD, Joron M. What shapes the continuum of reproductive isolation? Lessons from Heliconius butterflies. Proc Biol Sci 2017;284(1856):20170335. doi: 10.1098/rspb.2017.0335 PubMed DOI PMC
Orr HA. The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics 1995;139(4):1805–13. doi: 10.1093/genetics/139.4.1805 PubMed DOI PMC
Wu CI. The genic view of the process of speciation. J Evolution Biol. 2001;14(6):851–65.
Otto SP. Evolutionary potential for genomic islands of sexual divergence on recombining sex chromosomes. New Phytol 2019;224(3):1241–51. doi: 10.1111/nph.16083 PubMed DOI
Barton NH, Charlesworth B. Genetic revolutions, founder effects, and speciation. Annu Rev Ecol Syst 1984;15(1):133–64. doi: 10.1146/annurev.es.15.110184.001025 DOI
Szymura JM, Barton NH. Genetic analysis of a hybrid zone between the fire-bellied toads, bombina bombina and B. Variegata, near cracow in southern poland. Evolution 1986;40(6):1141–59. doi: 10.1111/j.1558-5646.1986.tb05740.x PubMed DOI
Machol´an M, Munclinger P, Sugerkova M, Dufkova P, Bımova B, Bozıkova E, et al.. Genetic analysis of autosomal and X-linked markers across a mouse hybrid zone. Evolution. 2007;61(4):746–771. PubMed
Morán T, Fontdevila A. Genome-wide dissection of hybrid sterility in Drosophila confirms a polygenic threshold architecture. J Hered 2014;105(3):381–96. doi: 10.1093/jhered/esu003 PubMed DOI
Yan J, Zhu M, Liu W, Xu Q, Zhu C, Li J, et al.. Genetic variation and bidirectional gene flow in the riparian plant Miscanthus lutarioriparius, across its endemic range: implications for adaptive potential. GCB Bioenergy 2015;8(4):764–76. doi: 10.1111/gcbb.12278 DOI
Ngeve MN, Van der Stocken T, Sierens T, Koedam N, Triest L. Bidirectional gene flow on a mangrove river landscape and between-catchment dispersal of Rhizophora racemosa (Rhizophoraceae). Hydrobiologia 2016;790(1):93–108. doi: 10.1007/s10750-016-3021-2 DOI
Banker SE, Bonhomme F, Nachman MW. Bidirectional Introgression between Mus musculus domesticus and Mus spretus. Genome Biol Evol. 2022;14(1):evab288. doi: 10.1093/gbe/evab288 PubMed DOI PMC
Wilkinson-Herbots HM. The distribution of the coalescence time and the number of pairwise nucleotide differences in the “isolation with migration” model. Theor Popul Biol 2008;73(2):277–88. doi: 10.1016/j.tpb.2007.11.001 PubMed DOI
Gompert Z, Buerkle CA. bgc: Software for Bayesian estimation of genomic clines. Mol Ecol Resour 2012;12(6):1168–76. doi: 10.1111/1755-0998.12009.x PubMed DOI
Andrews S. FastQC version 0.11.5: a quality control tool for high throughput sequence data. 2016.
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90. doi: 10.1093/bioinformatics/bty560 PubMed DOI PMC
Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016;32(19):3047–8. doi: 10.1093/bioinformatics/btw354 PubMed DOI PMC
Mackintosh A, Laetsch DR, Baril T, Ebdon S, Jay P, Vila R, et al.. The genome sequence of the scarce swallowtail, Iphiclides podalirius. G3 (Bethesda). 2022;12(9):jkac193. doi: 10.1093/g3journal/jkac193 PubMed DOI PMC
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint. 2013. https://arxiv.org/abs/1303.3997
Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment formats. Bioinformatics 2015;31(12):2032–4. doi: 10.1093/bioinformatics/btv098 PubMed DOI PMC
Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint. 2012. https://arxiv.org/abs/1207.3907.
Keightley PD, Pinharanda A, Ness RW, Simpson F, Dasmahapatra KK, Mallet J, et al.. Estimation of the spontaneous mutation rate in Heliconius melpomene. Mol Biol Evol 2015;32(1):239–43. doi: 10.1093/molbev/msu302 PubMed DOI PMC
Baumdicker F, Bisschop G, Goldstein D, Gower G, Ragsdale AP, Tsambos G, et al. Efficient ancestry and mutation simulation with msprime 1.0. Genetics. 2022;220(3):iyab229. doi: 10.1093/genetics/iyab229 PubMed DOI PMC