Patterns of gene flow and selection across multiple species of Acrocephalus warblers: footprints of parallel selection on the Z chromosome
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
27311647
PubMed Central
PMC4910229
DOI
10.1186/s12862-016-0692-2
PII: 10.1186/s12862-016-0692-2
Knihovny.cz E-zdroje
- Klíčová slova
- Acrocephalus warblers, Adaptive radiation, Gene flow, Parallel adaptive evolution, Speciation, Z chromosome,
- MeSH
- biodiverzita MeSH
- biologická evoluce MeSH
- fenotyp MeSH
- genetická variace MeSH
- hybridizace genetická MeSH
- pohlavní chromozomy * MeSH
- reprodukční izolace MeSH
- selekce (genetika) * MeSH
- tok genů * MeSH
- vznik druhů (genetika) MeSH
- zpěvní ptáci genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: Understanding the mechanisms and selective forces leading to adaptive radiations and origin of biodiversity is a major goal of evolutionary biology. Acrocephalus warblers are small passerines that underwent an adaptive radiation in the last approximately 10 million years that gave rise to 37 extant species, many of which still hybridize in nature. Acrocephalus warblers have served as model organisms for a wide variety of ecological and behavioral studies, yet our knowledge of mechanisms and selective forces driving their radiation is limited. Here we studied patterns of interspecific gene flow and selection across three European Acrocephalus warblers to get a first insight into mechanisms of radiation of this avian group. RESULTS: We analyzed nucleotide variation at eight nuclear loci in three hybridizing Acrocephalus species with overlapping breeding ranges in Europe. Using an isolation-with-migration model for multiple populations, we found evidence for unidirectional gene flow from A. scirpaceus to A. palustris and from A. palustris to A. dumetorum. Gene flow was higher between genetically more closely related A. scirpaceus and A. palustris than between ecologically more similar A. palustris and A. dumetorum, suggesting that gradual accumulation of intrinsic barriers rather than divergent ecological selection are more efficient in restricting interspecific gene flow in Acrocephalus warblers. Although levels of genetic differentiation between different species pairs were in general not correlated, we found signatures of apparently independent instances of positive selection at the same two Z-linked loci in multiple species. CONCLUSIONS: Our study brings the first evidence that gene flow occurred during Acrocephalus radiation and not only between sister species. Interspecific gene flow could thus be an important source of genetic variation in individual Acrocephalus species and could have accelerated adaptive evolution and speciation rate in this avian group by creating novel genetic combinations and new phenotypes. Independent instances of positive selection at the same loci in multiple species indicate an interesting possibility that the same loci might have contributed to reproductive isolation in several speciation events.
Department of Biology Section of Ecology FI 20014 University of Turku Turku Finland
Department of Zoology Faculty of Science Charles University Prague Prague Czech Republic
Institute of Vertebrate Biology Academy of Sciences of the Czech Republic Brno Czech Republic
Natural Resources Institute Finland Itäinen Pitkäkatu 3 FI 20240 Turku Finland
Zobrazit více v PubMed
Arnold ML. Divergence with genetic exchange. Oxford: Oxford University Press; 2015.
Seehausen O. Hybridization and adaptive radiation. Trends Ecol Evol. 2004;19:198–207. doi: 10.1016/j.tree.2004.01.003. PubMed DOI
Palmer DH, Kronforst MR. Divergence and gene flow among Darwin’s finches: a genome-wide view of adaptive radiation driven by interspecies allele sharing. Bioessays. 2015;37:968–74. doi: 10.1002/bies.201500047. PubMed DOI PMC
Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW, Hohenlohe PA, et al. Genomics and the origin of species. Nat Rev Genet. 2014;15:176–92. doi: 10.1038/nrg3644. PubMed DOI
Wu CI. The genic view of the process of speciation. J Evol Biol. 2001;14:851–65. doi: 10.1046/j.1420-9101.2001.00335.x. DOI
Pinho C, Hey J. Divergence with gene flow: models and data. Annu Rev Ecol Evol S. 2010;41:215–30. doi: 10.1146/annurev-ecolsys-102209-144644. DOI
Hey J. Isolation with migration models for more than two populations. Mol Biol Evol. 2010;27:905–20. doi: 10.1093/molbev/msp296. PubMed DOI PMC
Macholán M, Munclinger P, Sugerková M, Dufková P, Bímová B, Bozíková E, et al. Genetic analysis of autosomal and X-linked markers across a mouse hybrid zone. Evolution. 2007;61:746–71. doi: 10.1111/j.1558-5646.2007.00065.x. PubMed DOI
Storchová R, Reif J, Nachman MW. Female heterogamety and speciation: reduced introgression of the Z chromosome between two species of nightingales. Evolution. 2010;64:456–71. doi: 10.1111/j.1558-5646.2009.00841.x. PubMed DOI PMC
Ellegren H, Smeds L, Burri R, Olason PI, Backström N, Kawakami T, et al. The genomic landscape of species divergence in Ficedula flycatchers. Nature. 2012;491:756–60. PubMed
Martin SH, Dasmahapatra KK, Nadeau NJ, Salazar C, Walters JR, Simpson F, et al. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res. 2013;23:1817–28. doi: 10.1101/gr.159426.113. PubMed DOI PMC
Nachman MW, Payseur BA. Recombination rate variation and speciation: theoretical predictions and empirical results from rabbits and mice. Phil Trans R Soc B. 2012;367:409–21. doi: 10.1098/rstb.2011.0249. PubMed DOI PMC
de León LF, Bermingham E, Podos J, Hendry AP. Divergence with gene flow as facilitated by ecological differences: within-island variation in Darwin’s finches. Philos Trans R Soc Lond B Biol Sci. 2010;365:1041–52. doi: 10.1098/rstb.2009.0314. PubMed DOI PMC
Malinsky M, Challis RJ, Tyers AM, Schiffels S, Terai Y, Ngatunga BP, et al. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science. 2015;350:1493–8. doi: 10.1126/science.aac9927. PubMed DOI PMC
Keller I, Wagner CE, Greuter L, Mwaiko S, Selz OM, Sivasundar A, et al. Population genomic signatures of divergent adaptation, gene flow and hybrid speciation in the rapid radiation of Lake Victoria cichlid fishes. Mol Ecol. 2013;22:2848–63. doi: 10.1111/mec.12083. PubMed DOI
Sullivan J, Demboski JR, Bell KC, Hird S, Sarver B, Reid N, et al. Divergence with gene flow within the recent chipmunk radiation (Tamias) Heredity. 2014;113:185–94. doi: 10.1038/hdy.2014.27. PubMed DOI PMC
Lamichhaney S, Berglund J, Almén MS, Maqbool K, Grabherr M, Martinez-Barrio A, et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature. 2015;518:371–5. doi: 10.1038/nature14181. PubMed DOI
Zhang W, Dasmahapatra KK, Mallet J, Moreira GR, Kronforst MR. Genome-wide introgression among distantly related Heliconius butterfly species. Genome Biol. 2016;17:25. doi: 10.1186/s13059-016-0889-0. PubMed DOI PMC
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–8. doi: 10.1038/nature11631. PubMed DOI
Leisler B, Schulze-Hagen K. The Reed Warblers: diversity in a uniform bird family. Zeist: KNNV Publishing; 2011.
Hansson B, Tarka M, Dawson DA, Horsburgh GJ. Hybridization but no evidence for backcrossing and introgression in a sympatric population of Great Reed Warblers and Clamorous Reed Warblers. PLoS One. 2012;7:e31667. doi: 10.1371/journal.pone.0031667. PubMed DOI PMC
Koskimies P. Polygyny in Blyth’s Reed Warbler Acrocephalus dumetorum. Ann Zool Fennici. 1984;21:239–42.
Cramp S. Handbook of the birds of Europe, the Middle East and North Africa. New York: Oxford University Press; 1992.
Lemaire F. Mixed song, interspecific competition and hybridisation in the reed and marsh warblers. Behaviour. 1977;63:215–40. doi: 10.1163/156853977X00423. DOI
Otterbeck A, Dale S, Lindén A, Marthinsen G. A male Reed Warbler and Marsh Warbler hybrid (Acrocephalus scirpaceus × A. palustris) in Norway documented with molecular methods. Ornis Norvegica. 2013;36:6–13. doi: 10.15845/on.v36i0.351. DOI
Fregin S, Haase M, Olsson U, Alström P. Multi-locus phylogeny of the family Acrocephalidae (Aves: Passeriformes) – the traditional taxonomy overthrown. Mol Phyl Evol. 2009;52:866–78. doi: 10.1016/j.ympev.2009.04.006. PubMed DOI
Lindholm A, Bensch S, Dowsett-Lemaire F, Forsten A, Karkkainen H. Hybrid Marsh × Blyth’s Reed Warbler with mixed song in Finland in June 2003. Dutch Birding. 2007;29:223–31.
Hagström B. Om en hybrid mellan rör - och busksångare. Vingspegeln. 1984;3:167.
Griffiths R, Double MC, Orr K, Dawson RJG. A DNA test to sex most birds. Mol Ecol. 1998;7:1071–5. doi: 10.1046/j.1365-294x.1998.00389.x. PubMed DOI
Hall TA. BioEdit: a user friendly biological sequence alignment editor and analyses program for Windows 95/98/NT. Nucleic Acids Symp Series. 1999;41:95–8.
Stephens M, Donnelly P. A comparison of Bayesian methods for haplotype reconstruction from population genetic data. Am J Hum Genet. 2003;73:1162–9. doi: 10.1086/379378. PubMed DOI PMC
Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 2003;19:2496–7. doi: 10.1093/bioinformatics/btg359. PubMed DOI
Hudson RR, Kreitman M, Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987;116:153–9. PubMed PMC
Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16:37–48. doi: 10.1093/oxfordjournals.molbev.a026036. PubMed DOI
Woerner AE, Cox MP, Hammer MF. Recombination-filtered genomic datasets by information maximization. Bioinformatics. 2007;23:1851–3. doi: 10.1093/bioinformatics/btm253. PubMed DOI
Fregin S, Haase M, Olsson U, Alström P. Pitfalls in comparisons of genetic distances: a case study of the avian family Acrocephalidae. Mol Phyl Evol. 2012;62:319–28. doi: 10.1016/j.ympev.2011.10.003. PubMed DOI
Weir JT, Schluter D. Calibrating the avian molecular clock. Mol Ecol. 2008;17:2321–8. doi: 10.1111/j.1365-294X.2008.03742.x. PubMed DOI
Hey J, Nielsen R. Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proc Natl Acad Sci U S A. 2007;104:2785–90. doi: 10.1073/pnas.0611164104. PubMed DOI PMC
Cruickshank TE, Hahn MW. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol Ecol. 2014;23:3133–57. doi: 10.1111/mec.12796. PubMed DOI
Schluter D. Ecological causes of adaptive radiation. Am Nat. 1996;148:S40–64. doi: 10.1086/285901. DOI
Berner D, Salzburger W. The genomics of organismal diversification illuminated by adaptive radiations. Trends Genet. 2015;31:491–9. doi: 10.1016/j.tig.2015.07.002. PubMed DOI
Currat M, Ruedi M, Petit RJ, Excoffier L. The hidden side of invasions: massive introgression by local genes. Evolution. 2008;62:1908–20. PubMed
Alund M, Immler S, Rice AM, Qvarnström A. Low fertility of wild hybrid male flycatchers despite recent divergence. Biol Lett. 2013;9:20130169. doi: 10.1098/rsbl.2013.0169. PubMed DOI PMC
Delmore KE, Hübner S, Kane NC, Schuster R, Andrew RL, Câmara F, et al. Genomic analysis of a migratory divide reveals candidate genes for migration and implicates selective sweeps in generating islands of differentiation. Mol Ecol. 2015;24:1873–88. doi: 10.1111/mec.13150. PubMed DOI
Backström N, Karaiskou N, Leder EH, Gustafsson L, Primmer CR, Qvarnström A, et al. A gene-based genetic linkage map of the collared flycatcher (Ficedula albicollis) reveals extensive synteny and gene-order conservation during 100 million years of avian evolution. Genetics. 2008;179:1479–95. doi: 10.1534/genetics.108.088195. PubMed DOI PMC
Muir G, Dixon CJ, Harper AL, Filatov DA. Dynamics of drift, gene flow, and selection during speciation in Silene. Evolution. 2012;66:1447–58. doi: 10.1111/j.1558-5646.2011.01529.x. PubMed DOI
Burri R, Nater A, Kawakami T, Mugal CF, Olason PI, Smeds L, et al. Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Res. 2015;25:1656–65. doi: 10.1101/gr.196485.115. PubMed DOI PMC
Reifová R, Reif J, Antczak M, Nachman MW. Ecological character displacement in the face of gene flow: evidence from two species of nightingales. BMC Evol Biol. 2011;11:138. doi: 10.1186/1471-2148-11-138. PubMed DOI PMC
Saetre GP, Moum T, Bures S, Kral M, Adamjan M, Moreno J. A sexually selected character displacement in flycatchers reinforces premating isolation. Nature. 1997;387:589–92. doi: 10.1038/42451. DOI