Patterns of gene flow and selection across multiple species of Acrocephalus warblers: footprints of parallel selection on the Z chromosome

. 2016 Jun 16 ; 16 (1) : 130. [epub] 20160616

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27311647
Odkazy

PubMed 27311647
PubMed Central PMC4910229
DOI 10.1186/s12862-016-0692-2
PII: 10.1186/s12862-016-0692-2
Knihovny.cz E-zdroje

BACKGROUND: Understanding the mechanisms and selective forces leading to adaptive radiations and origin of biodiversity is a major goal of evolutionary biology. Acrocephalus warblers are small passerines that underwent an adaptive radiation in the last approximately 10 million years that gave rise to 37 extant species, many of which still hybridize in nature. Acrocephalus warblers have served as model organisms for a wide variety of ecological and behavioral studies, yet our knowledge of mechanisms and selective forces driving their radiation is limited. Here we studied patterns of interspecific gene flow and selection across three European Acrocephalus warblers to get a first insight into mechanisms of radiation of this avian group. RESULTS: We analyzed nucleotide variation at eight nuclear loci in three hybridizing Acrocephalus species with overlapping breeding ranges in Europe. Using an isolation-with-migration model for multiple populations, we found evidence for unidirectional gene flow from A. scirpaceus to A. palustris and from A. palustris to A. dumetorum. Gene flow was higher between genetically more closely related A. scirpaceus and A. palustris than between ecologically more similar A. palustris and A. dumetorum, suggesting that gradual accumulation of intrinsic barriers rather than divergent ecological selection are more efficient in restricting interspecific gene flow in Acrocephalus warblers. Although levels of genetic differentiation between different species pairs were in general not correlated, we found signatures of apparently independent instances of positive selection at the same two Z-linked loci in multiple species. CONCLUSIONS: Our study brings the first evidence that gene flow occurred during Acrocephalus radiation and not only between sister species. Interspecific gene flow could thus be an important source of genetic variation in individual Acrocephalus species and could have accelerated adaptive evolution and speciation rate in this avian group by creating novel genetic combinations and new phenotypes. Independent instances of positive selection at the same loci in multiple species indicate an interesting possibility that the same loci might have contributed to reproductive isolation in several speciation events.

Zobrazit více v PubMed

Arnold ML. Divergence with genetic exchange. Oxford: Oxford University Press; 2015.

Seehausen O. Hybridization and adaptive radiation. Trends Ecol Evol. 2004;19:198–207. doi: 10.1016/j.tree.2004.01.003. PubMed DOI

Palmer DH, Kronforst MR. Divergence and gene flow among Darwin’s finches: a genome-wide view of adaptive radiation driven by interspecies allele sharing. Bioessays. 2015;37:968–74. doi: 10.1002/bies.201500047. PubMed DOI PMC

Seehausen O, Butlin RK, Keller I, Wagner CE, Boughman JW, Hohenlohe PA, et al. Genomics and the origin of species. Nat Rev Genet. 2014;15:176–92. doi: 10.1038/nrg3644. PubMed DOI

Wu CI. The genic view of the process of speciation. J Evol Biol. 2001;14:851–65. doi: 10.1046/j.1420-9101.2001.00335.x. DOI

Pinho C, Hey J. Divergence with gene flow: models and data. Annu Rev Ecol Evol S. 2010;41:215–30. doi: 10.1146/annurev-ecolsys-102209-144644. DOI

Hey J. Isolation with migration models for more than two populations. Mol Biol Evol. 2010;27:905–20. doi: 10.1093/molbev/msp296. PubMed DOI PMC

Macholán M, Munclinger P, Sugerková M, Dufková P, Bímová B, Bozíková E, et al. Genetic analysis of autosomal and X-linked markers across a mouse hybrid zone. Evolution. 2007;61:746–71. doi: 10.1111/j.1558-5646.2007.00065.x. PubMed DOI

Storchová R, Reif J, Nachman MW. Female heterogamety and speciation: reduced introgression of the Z chromosome between two species of nightingales. Evolution. 2010;64:456–71. doi: 10.1111/j.1558-5646.2009.00841.x. PubMed DOI PMC

Ellegren H, Smeds L, Burri R, Olason PI, Backström N, Kawakami T, et al. The genomic landscape of species divergence in Ficedula flycatchers. Nature. 2012;491:756–60. PubMed

Martin SH, Dasmahapatra KK, Nadeau NJ, Salazar C, Walters JR, Simpson F, et al. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res. 2013;23:1817–28. doi: 10.1101/gr.159426.113. PubMed DOI PMC

Nachman MW, Payseur BA. Recombination rate variation and speciation: theoretical predictions and empirical results from rabbits and mice. Phil Trans R Soc B. 2012;367:409–21. doi: 10.1098/rstb.2011.0249. PubMed DOI PMC

de León LF, Bermingham E, Podos J, Hendry AP. Divergence with gene flow as facilitated by ecological differences: within-island variation in Darwin’s finches. Philos Trans R Soc Lond B Biol Sci. 2010;365:1041–52. doi: 10.1098/rstb.2009.0314. PubMed DOI PMC

Malinsky M, Challis RJ, Tyers AM, Schiffels S, Terai Y, Ngatunga BP, et al. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science. 2015;350:1493–8. doi: 10.1126/science.aac9927. PubMed DOI PMC

Keller I, Wagner CE, Greuter L, Mwaiko S, Selz OM, Sivasundar A, et al. Population genomic signatures of divergent adaptation, gene flow and hybrid speciation in the rapid radiation of Lake Victoria cichlid fishes. Mol Ecol. 2013;22:2848–63. doi: 10.1111/mec.12083. PubMed DOI

Sullivan J, Demboski JR, Bell KC, Hird S, Sarver B, Reid N, et al. Divergence with gene flow within the recent chipmunk radiation (Tamias) Heredity. 2014;113:185–94. doi: 10.1038/hdy.2014.27. PubMed DOI PMC

Lamichhaney S, Berglund J, Almén MS, Maqbool K, Grabherr M, Martinez-Barrio A, et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature. 2015;518:371–5. doi: 10.1038/nature14181. PubMed DOI

Zhang W, Dasmahapatra KK, Mallet J, Moreira GR, Kronforst MR. Genome-wide introgression among distantly related Heliconius butterfly species. Genome Biol. 2016;17:25. doi: 10.1186/s13059-016-0889-0. PubMed DOI PMC

Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–8. doi: 10.1038/nature11631. PubMed DOI

Leisler B, Schulze-Hagen K. The Reed Warblers: diversity in a uniform bird family. Zeist: KNNV Publishing; 2011.

Hansson B, Tarka M, Dawson DA, Horsburgh GJ. Hybridization but no evidence for backcrossing and introgression in a sympatric population of Great Reed Warblers and Clamorous Reed Warblers. PLoS One. 2012;7:e31667. doi: 10.1371/journal.pone.0031667. PubMed DOI PMC

Koskimies P. Polygyny in Blyth’s Reed Warbler Acrocephalus dumetorum. Ann Zool Fennici. 1984;21:239–42.

Cramp S. Handbook of the birds of Europe, the Middle East and North Africa. New York: Oxford University Press; 1992.

Lemaire F. Mixed song, interspecific competition and hybridisation in the reed and marsh warblers. Behaviour. 1977;63:215–40. doi: 10.1163/156853977X00423. DOI

Otterbeck A, Dale S, Lindén A, Marthinsen G. A male Reed Warbler and Marsh Warbler hybrid (Acrocephalus scirpaceus × A. palustris) in Norway documented with molecular methods. Ornis Norvegica. 2013;36:6–13. doi: 10.15845/on.v36i0.351. DOI

Fregin S, Haase M, Olsson U, Alström P. Multi-locus phylogeny of the family Acrocephalidae (Aves: Passeriformes) – the traditional taxonomy overthrown. Mol Phyl Evol. 2009;52:866–78. doi: 10.1016/j.ympev.2009.04.006. PubMed DOI

Lindholm A, Bensch S, Dowsett-Lemaire F, Forsten A, Karkkainen H. Hybrid Marsh × Blyth’s Reed Warbler with mixed song in Finland in June 2003. Dutch Birding. 2007;29:223–31.

Hagström B. Om en hybrid mellan rör - och busksångare. Vingspegeln. 1984;3:167.

Griffiths R, Double MC, Orr K, Dawson RJG. A DNA test to sex most birds. Mol Ecol. 1998;7:1071–5. doi: 10.1046/j.1365-294x.1998.00389.x. PubMed DOI

Hall TA. BioEdit: a user friendly biological sequence alignment editor and analyses program for Windows 95/98/NT. Nucleic Acids Symp Series. 1999;41:95–8.

Stephens M, Donnelly P. A comparison of Bayesian methods for haplotype reconstruction from population genetic data. Am J Hum Genet. 2003;73:1162–9. doi: 10.1086/379378. PubMed DOI PMC

Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 2003;19:2496–7. doi: 10.1093/bioinformatics/btg359. PubMed DOI

Hudson RR, Kreitman M, Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987;116:153–9. PubMed PMC

Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16:37–48. doi: 10.1093/oxfordjournals.molbev.a026036. PubMed DOI

Woerner AE, Cox MP, Hammer MF. Recombination-filtered genomic datasets by information maximization. Bioinformatics. 2007;23:1851–3. doi: 10.1093/bioinformatics/btm253. PubMed DOI

Fregin S, Haase M, Olsson U, Alström P. Pitfalls in comparisons of genetic distances: a case study of the avian family Acrocephalidae. Mol Phyl Evol. 2012;62:319–28. doi: 10.1016/j.ympev.2011.10.003. PubMed DOI

Weir JT, Schluter D. Calibrating the avian molecular clock. Mol Ecol. 2008;17:2321–8. doi: 10.1111/j.1365-294X.2008.03742.x. PubMed DOI

Hey J, Nielsen R. Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proc Natl Acad Sci U S A. 2007;104:2785–90. doi: 10.1073/pnas.0611164104. PubMed DOI PMC

Cruickshank TE, Hahn MW. Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Mol Ecol. 2014;23:3133–57. doi: 10.1111/mec.12796. PubMed DOI

Schluter D. Ecological causes of adaptive radiation. Am Nat. 1996;148:S40–64. doi: 10.1086/285901. DOI

Berner D, Salzburger W. The genomics of organismal diversification illuminated by adaptive radiations. Trends Genet. 2015;31:491–9. doi: 10.1016/j.tig.2015.07.002. PubMed DOI

Currat M, Ruedi M, Petit RJ, Excoffier L. The hidden side of invasions: massive introgression by local genes. Evolution. 2008;62:1908–20. PubMed

Alund M, Immler S, Rice AM, Qvarnström A. Low fertility of wild hybrid male flycatchers despite recent divergence. Biol Lett. 2013;9:20130169. doi: 10.1098/rsbl.2013.0169. PubMed DOI PMC

Delmore KE, Hübner S, Kane NC, Schuster R, Andrew RL, Câmara F, et al. Genomic analysis of a migratory divide reveals candidate genes for migration and implicates selective sweeps in generating islands of differentiation. Mol Ecol. 2015;24:1873–88. doi: 10.1111/mec.13150. PubMed DOI

Backström N, Karaiskou N, Leder EH, Gustafsson L, Primmer CR, Qvarnström A, et al. A gene-based genetic linkage map of the collared flycatcher (Ficedula albicollis) reveals extensive synteny and gene-order conservation during 100 million years of avian evolution. Genetics. 2008;179:1479–95. doi: 10.1534/genetics.108.088195. PubMed DOI PMC

Muir G, Dixon CJ, Harper AL, Filatov DA. Dynamics of drift, gene flow, and selection during speciation in Silene. Evolution. 2012;66:1447–58. doi: 10.1111/j.1558-5646.2011.01529.x. PubMed DOI

Burri R, Nater A, Kawakami T, Mugal CF, Olason PI, Smeds L, et al. Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Res. 2015;25:1656–65. doi: 10.1101/gr.196485.115. PubMed DOI PMC

Reifová R, Reif J, Antczak M, Nachman MW. Ecological character displacement in the face of gene flow: evidence from two species of nightingales. BMC Evol Biol. 2011;11:138. doi: 10.1186/1471-2148-11-138. PubMed DOI PMC

Saetre GP, Moum T, Bures S, Kral M, Adamjan M, Moreno J. A sexually selected character displacement in flycatchers reinforces premating isolation. Nature. 1997;387:589–92. doi: 10.1038/42451. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace