Top-down Surfactant-Free Synthesis of Supported Palladium-Nanostructured Catalysts
Status PubMed-not-MEDLINE Language English Country Germany Media electronic-ecollection
Document type Journal Article
PubMed
40212684
PubMed Central
PMC11935149
DOI
10.1002/smsc.202300241
PII: SMSC202300241
Knihovny.cz E-resources
- Keywords
- electrochemical erosion, hydrogen embrittlement, hydrogen evolution reaction, nanoparticles, palladium,
- Publication type
- Journal Article MeSH
Nanostructured palladium (Pd) is a universal catalyst that is widely used in applications ranging from catalytic converters of combustion engine cars to hydrogenation catalysts in industrial processes. Standard protocols for synthesizing such nanoparticles (NPs) typically use bottom-up approaches. They utilize special and often expensive physical techniques or wet-chemical methods requiring organic surfactants. These surfactants should often be removed before catalytic applications. In this article, the synthesis of Pd NPs immobilized on carbon support by electrochemical erosion without using any surfactants or toxic materials is reported. The Pd NPs synthesis essentially relies on a Pd bulk pretreatment, which causes material embrittlement and allows the erosion process to evolve more efficiently, producing homogeneously distributed NPs on the support. Moreover, the synthesized catalyst is tested for hydrogen evolution reaction. The activity evaluations identify optimal synthesis parameters related to the erosion procedure. The electrocatalytic properties of the Pd NPs produced with sizes down to 6.4 ± 2.9 nm are compared with a commercially available Pd/C catalyst. The synthesized catalyst outperforms the commercial catalyst within all properties, like specific surface area, geometric activity, mass activity, specific activity, and durability.
Catalysis Research Center TUM Ernst Otto Fischer Str 1 Garching 85748 Germany
Heinz Maier Leibnitz Zentrum TUM Lichtenbergstr 1 Garching 85748 Germany
Université Grenoble Alpes Université Savoie Mont Blanc CNRS Grenoble INP LEPMI Grenoble 38000 France
See more in PubMed
Erchinger J. E., van Gemmeren M., Asian J. Org. Chem. 2020, 10, 50.
Winiwarter A., Silvioli L., Scott S. B., Enemark‐Rasmussen K., Saric M., Trimarco D. B., Vesborg P. C. K., Moses P. G., Stephens I. E. L., Seger B., Rossmeisl J., Chorkendorff I., Energy Environ. Sci. 2019, 12, 1055.
Kim S. R., Wegener E. C., Yang M. C., O’Reilly M. E., Oh S., Hendon C. H., Miller J. T., Surendranath Y., J. Am. Chem. Soc. 2020, 142, 20631. PubMed
Chang Q., Zhang P., Mostaghimi A. H. B., Zhao X., Denny S. R., Lee J. H., Gao H., Zhang Y., Xin H. L., Siahrostamin S., Chen J. G., Chen Z., Nat. Commun. 2020, 11, 2178. PubMed PMC
Meng H., Zeng D., Xie F., Catalysts 2015, 5, 1221.
Shaari N., Kamarudin S. K., Bahru R., Osman S. H., Ishak N. A. I. M., Int. J. Energy Res. 2021, 45, 6644.
Huang L., Zou J., Ye J., Zhou Z.‐Y., Lin Z., Kang X., Jain P. K., Chen S., Angew. Chem., Int. Ed. 2019, 58, 8794. PubMed
Ali A., Shen P. K., J. Mater. Chem. A 2019, 7, 22189.
Lee S., Cho H., Kim H. J., Hong J. W., Lee Y. W., Materials 2021, 14, 2970. PubMed
Jin M., Zhang H., Xie Z., Xia Y., Energy Environ. Sci. 2012, 5, 6352.
Shao M., J. Power Sources 2011, 196, 2433.
Ma M., Zhu W., Shao Q., Shi H., Liao F., Shao C., Shao M., ACS Appl. Nano Mater. 2021, 4, 1478.
Wang T., Chutia A., Brett D. J. L., Shearing P. R., He G., Chai G., Parkin I. P., Energy Environ. Sci. 2021, 14, 2639.
Piermatti O., Catalysts 2021, 11, 1258.
Park J. Y., Aliaga C., Renzas J. R., Lee H., Somorjai G. A., Catal. Lett. 2009, 129, 1.
Brimaud S., Coutanceau C., Garnier E., Léger J.‐M., Gérard F., Pronier S., Leoni M., J. Electroanal. Chem. 2007, 602, 226.
Hersbach T. J. P., Koper M. T. M., Curr. Opin. Electrochem. 2021, 26, 100653.
Feng J., Chen D., Sediq A. S., Romeijn S., Tichelar F. D., Jiskoot W., Yang J., Koper M. T. M., ACS Appl. Mater. Interfaces 2018, 10, 9532. PubMed PMC
Sui S., Wang X., Zhou X., Su Y., Riffat S., Liu C., J. Mater. Chem. 2016, 5, 1808.
Pérez‐Rodriguez S., Pastor E., Lázaro M. J., Int. J. Hydrogen Energy 2018, 43, 7911.
Chen X., Chen S., Huang W., Zheng J., Li Z., Electrochim. Acta 2009, 54,, 7370.
Huang W., Fu L., Yang Y., Hu S., Li C., Li Z., Electrochem. Solid‐State Lett. 2010, 13, K46.
Huang W., Chen S., Zheng J., Li Z., Electrochem. Commun. 2008, 11, 469.
Liu J., Huang W., Chen S., Hu S., Liu F., Li Z., Int. J. Electrochem. Sci. 2009, 4, 1302.
Yanson A. I., Rodriguez P., Garcia‐Araez N., Mom R. V., Tichelar F. D., Koper M. T. M., Angew. Chem. Int. Ed. 2011, 50, 6346. PubMed PMC
Hersbach T. J. P., McCrum I. T., Anastasiadou D., Wever R., Calle‐Vallejo F., Koper M. T. M., ACS Appl. Mater. Interfaces 2018, 10, 39363. PubMed
Yanson A. I., Antonov P. V., Rodriguez P., Koper M. T. M., Electrochim. Acta 2013, 112, 913.
Rodriguez P., Tichelar F. D., Koper M. T. M., Yanson A. I., J. Am. Chem. Soc. 2011, 133, 17626. PubMed
Fichtner J., Garlyyev B., Watzele S., El‐Sayed H. A., Schwämmlein J. N., Li W., Maillard F. M., Dubau L., Michalicka J., Macak J. M., Holleitner A., Bandarenka A. S., ACS Appl. Mater. Interfaces 2019, 11, 5129. PubMed
Garlyyev B., Watzele S., Fichtner J., Michalička J., Schökel A., Senyshyn A., Perego A., Pan D., El‐Sayed H. A., Macak J. M., Atanassov P., Zenyuk I. V., Bandarenka A. S., Nano Res. 2021, 14, 2762.
Fichtner J., Watzele S., Garlyyev B., Kluge R. M., Haimerl R. M., El‐Sayed H. A., Li W., Maillard F. M., Dubau L., Chattot R., Michalicka J., Macak J. M., Wang W., Wang D., Gigl T., Hugenschmidt C., Bandarenka A. S., ACS Catal. 2020, 10, 3131.
Sarkar S., Peter S. C., Inorg. Chem. Front. 2018, 5, 2060.
Louthan M. R. Jr., J. Fail. Anal. Prev. 2008, 8, 289.
Barnoush A., Vehoff H., Acta Mater. 2010, 58, 5274.
Murakami Y., Kanezaki T., Mine Y., Metall. Mater. Trans. A 2010, 41, 2548.
Bellanger G., Corrosion Cracking in Palladium. Scholarly Community Encyclopedia, https://encyclopedia.pub/entry/4 (accessed: August 2022).
Schmidt T. O., Ngoipala A., Arevalo R. L., Watzele S. A., Lipin R., Kluge R. M., Hou S., Haid R. W., Senyshyn A., Gubanova E. L., Bandarenka A. S., Small 2022, 18, 2202410. PubMed
Sobral J. M., Clyne T. W., Rezk R., Markaki A. E., Surf. Coat. Technol. 2017, 326, 327.
Yule L. C., Daviddi E., West G., Bentley C. L., Unwin P. R., J. Electroanal. Chem. 2020, 872, 114047.
Khodabakhshi S., Fulvio P. F., Andreoli E., Carbon 2020, 162, 604.
Zhao Z., Flores Espinoza M. M., Zhou J., Xue W., Duan X., Miao J., Huang Y., Nano Res. 2019, 12, 1467.
Benck J. D., Jackson A., Young D., Rettenwander D., Chiang Y., Chem. Mater. 2019, 31, 4234.
Holder C. F., Schaak R. E., ACS Nano 2019, 13, 7359. PubMed
Qin X., Zhang L., Xu G.‐L., Zhu S., Wang Q., Gu M., Zhang X., Sun C., Balbuena P. B., Amine K., Shao M., ACS Catal. 2019, 9, 9614.
FUELCELL Store , 20% Palladium on Vulcan, https://www.fuelcellstore.com/product/product&product_id=666 (accessed: December, 2022).
Smiljanić M., Bele M., Moriau L., Ruiz‐Zepeda F., Šala M., Hodnik N., J. Phys. Chem. C 2021, 125, 27534. PubMed PMC
Rodríguez‐Carvajal J., Phys. B 1993, 192, 55.
Cliff G., Lorimer G. W., J. Microsc. 1975, 103, 203.
Schneider C. A., Rasband W. S., Eliceiri K. W., Nat. Methods 2012, 9, 671. PubMed PMC
Lee J., Bang J. H., ACS Energy Lett. 2020, 5, 2706.
Fang L., Tao Q., Li M., Liao L., Chen D., Chen Y., Chin. J. Chem. Phys. 2010, 23, 543.
Henning S., Herranz J., Gasteiger H. A., J. Electrochem. Soc. 2014, 162,, F178.
Hara M., Linke U., Wandlowski T., Electrochim. Acta 2007, 52, 5733.
Wang M., Qin X., Jiang K., Dong Y., Shao M., Cai W., J. Phys. Chem. C 2017, 121, 3416.