Revealing Catalytic Properties of Palladium/Gold Systems toward Hydrogen Evolution, Oxidation, and Absorption with Scanning Electrochemical Microscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40502978
PubMed Central
PMC12150267
DOI
10.1021/acscatal.5c00783
Knihovny.cz E-zdroje
- Klíčová slova
- hydride formation, hydrogen evolution reaction, hydrogen oxidation reaction, monolayer, nanostructures, palladium, scanning electrochemical microscopy,
- Publikační typ
- časopisecké články MeSH
Palladium (Pd) is an active catalyst for various reactions, such as hydrogen evolution (HER) and hydrogen oxidation (HOR) reactions. However, its activity can be further optimized by introducing strain and ligand effects from Pd deposition onto suitable substrates like gold (Au). In this study, we use scanning electrochemical microscopy (SECM) to investigate the catalytic properties of such Pd/Au systems. For the HER, a sub-monolayer of Pd (PdML) was electrochemically deposited onto half of a polycrystalline (pc) Au substrate with underpotential deposition (UPD). The localized activity measurements revealed improved HER kinetics for Pd atoms at the Pd/Au border in 0.1 M HClO4. As a consequence, a set of Pd/Au samples with increasing density of Pd/Au borders was synthesized by atomic layer deposition (ALD). These ALD Pd deposits have an increased thickness compared to a sub-monolayer, which makes hydride formation thermodynamically viable. Because of this, the samples were investigated for the HOR/H absorption activity using the redox competition (RC) mode. We highlight the influence of cations in 0.1 M AMOH (AM = Li+, Na+, K+, Rb+, Cs+) electrolytes on the HOR/H absorption activity, displaying higher activities for larger cations: jLiOH < jNaOH < jKOH < jRbOH < jCsOH. From the spatial and temporal resolution of the activity, active spots are identified, which expand with time and diminishing hydrogen concentration in the electrolyte. Additional laser-induced current transient (LICT) experiments confirm the dependency between cation and electrocatalytic activity observed with RC-SECM.
Zobrazit více v PubMed
Bawab B., Thalluri S. M., Kolíbalová E., Zazpe R., Jelinek L., Rodriguez-Pereira J., Macak J. M.. Synergistic Effect of Pd Single Atoms and Nanoparticles Deposited on Carbon Supports by ALD Boosts Alkaline Hydrogen Evolution Reaction. Chem. Eng. J. 2024;482:148959. doi: 10.1016/j.cej.2024.148959. DOI
Schott C. M., Schneider P. M., Sadraoui K., Song K. T., Garlyyev B., Watzele S. A., Michalička J., Macak J. M., Viola A., Maillard F., Senyshyn A., Fischer J. A., Bandarenka A. S., Gubanova E. L.. Top-down Surfactant-Free Synthesis of Supported Palladium-Nanostructured Catalysts. Small Science. 2024;4(3):2300241. doi: 10.1002/smsc.202300241. PubMed DOI PMC
Zheng J., Zhou S., Gu S., Xu B., Yan Y.. Size-Dependent Hydrogen Oxidation and Evolution Activities on Supported Palladium Nanoparticles in Acid and Base. J. Electrochem. Soc. 2016;163(6):F499–F506. doi: 10.1149/2.0661606jes. DOI
Miller H. A., Vizza F., Marelli M., Zadick A., Dubau L., Chatenet M., Geiger S., Cherevko S., Doan H., Pavlicek R. K., Mukerjee S., Dekel D. R.. Highly Active Nanostructured Palladium-Ceria Electrocatalysts for the Hydrogen Oxidation Reaction in Alkaline Medium. Nano Energy. 2017;33:293–305. doi: 10.1016/j.nanoen.2017.01.051. DOI
Durst J., Simon C., Hasché F., Gasteiger H. A.. Hydrogen Oxidation and Evolution Reaction Kinetics on Carbon Supported Pt, Ir, Rh, and Pd Electrocatalysts in Acidic Media. J. Electrochem. Soc. 2015;162(1):F190–F203. doi: 10.1149/2.0981501jes. DOI
Nørskov J. K., Bligaard T., Logadottir A., Kitchin J. R., Chen J. G., Pandelov S., Stimming U.. Trends in the Exchange Current for Hydrogen Evolution. J. Electrochem. Soc. 2005;152(3):J23. doi: 10.1149/1.1856988. DOI
Zeng M., Li Y.. Recent Advances in Heterogeneous Electrocatalysts for the Hydrogen Evolution Reaction. J. Mater. Chem. A. 2015;3:14942–14962. doi: 10.1039/C5TA02974K. DOI
Medford A. J., Vojvodic A., Hummelsho̷j J. S., Voss J., Abild-Pedersen F., Studt F., Bligaard T., Nilsson A., Nørskov J. K.. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 2015;328:36–42. doi: 10.1016/j.jcat.2014.12.033. DOI
Sarkar S., Peter S. C.. An Overview on Pd-Based Electrocatalysts for the Hydrogen Evolution Reaction. Inorg. Chem. Front. 2018;5:2060–2080. doi: 10.1039/C8QI00042E. DOI
Garlyyev B., Fichtner J., Piqué O., Schneider O., Bandarenka A. S., Calle-Vallejo F.. Revealing the Nature of Active Sites in Electrocatalysis. Chem. Sci. 2019;10:8060–8075. doi: 10.1039/C9SC02654A. PubMed DOI PMC
Quaino P., Santos E., Wolfschmidt H., Montero M. A., Stimming U.. Theory Meets Experiment: Electrocatalysis of Hydrogen Oxidation/Evolution at Pd–Au Nanostructures. Catal. Today. 2011;177(1):55–63. doi: 10.1016/j.cattod.2011.05.004. DOI
Celorrio V., Quaino P. M., Santos E., Flórez-Montaño J., Humphrey J. J. L., Guillén-Villafuerte O., Plana D., Lázaro M. J., Pastor E., Fermín D. J.. Strain Effects on the Oxidation of CO and HCOOH on Au–Pd Core–Shell Nanoparticles. ACS Catal. 2017;7(3):1673–1680. doi: 10.1021/acscatal.6b03237. DOI
Kibler L. A., El-Aziz A. M., Hoyer R., Kolb D. M.. Tuning Reaction Rates by Lateral Strain in a Palladium Monolayer. Angew. Chem., Int. Ed. 2005;44(14):2080–2084. doi: 10.1002/anie.200462127. PubMed DOI
Liang Y., Csoklich C., McLaughlin D., Schneider O., Bandarenka A. S.. Revealing Active Sites for Hydrogen Evolution at Pt and Pd Atomic Layers on Au Surfaces. ACS Appl. Mater. Interfaces. 2019;11(13):12476–12480. doi: 10.1021/acsami.8b22146. PubMed DOI
Henning S., Herranz J., Gasteiger H. A.. Bulk-Palladium and Palladium-on-Gold Electrocatalysts for the Oxidation of Hydrogen in Alkaline Electrolyte. J. Electrochem. Soc. 2015;162(1):F178–F189. doi: 10.1149/2.1081501jes. DOI
Schmidt T. J., Stamenkovic V., Markovic N. M., Ross P. N. Jr.. Electrooxidation of H2, CO, and H2/CO on Well-Characterized Au(111)–Pd Surface Alloys. Electrochim. Acta. 2003;48(25–26):3823–3828. doi: 10.1016/S0013-4686(03)00516-4. DOI
Tang J., Petri M., Kibler L. A., Kolb D. M.. Pd Deposition onto Au(111) Electrodes from Sulphuric Acid Solution. Electrochim. Acta. 2005;51(1):125–132. doi: 10.1016/j.electacta.2005.04.009. DOI
Duncan H., Lasia A.. Mechanism of Hydrogen Adsorption/Absorption at Thin Pd Layers on Au(111) Electrochim. Acta. 2007;52(21):6195–6205. doi: 10.1016/j.electacta.2007.03.068. DOI
Viola A., Chattot R., Martin V., Tsirlina G., Nelayah J., Drnec J., Maillard F.. Hydrogen Trapping in Palladium Nanoparticles Revealed by Electrochemical, X-ray Scattering, and Spectrometric Measurements. J. Phys. Chem. C. 2023;127(36):17761–17769. doi: 10.1021/acs.jpcc.3c04464. DOI
Baldauf M., Kolb D. M.. A Hydrogen Adsorption and Absorption Study with Ultrathin Pd Overlayers on Au(111) and Au(100) Electrochim. Acta. 1993;38(15):2145–2153. doi: 10.1016/0013-4686(93)80091-D. DOI
Padama A. A. B., Kasai H.. First Principles Investigation of the Initial Stage of H-Induced Missing-Row Reconstruction of Pd(110) Surface. J. Chem. Phys. 2014;140(24):244707. doi: 10.1063/1.4885143. PubMed DOI
Kampshoff E., Waelchli N., Menck A., Kern K.. Hydrogen-Induced Missing-Row Reconstructions of Pd(110) Studied by Scanning Tunneling Microscopy. Surf. Sci. 1996;360(1–3):55–60. doi: 10.1016/0039-6028(96)00653-X. DOI
Schmidt T. O., Ngoipala A., Arevalo R. L., Watzele S. A., Lipin R., Kluge R. M., Hou S., Haid R. W., Senyshyn A., Gubanova E. L., Bandarenka A. S., Vandichel M.. et al. Elucidation of Structure–Activity Relations in Proton Electroreduction at Pd Surfaces: Theoretical and Experimental Study. Small. 2022;18(30):2202410. doi: 10.1002/smll.202202410. PubMed DOI
Kralj M., Becker C., Wandelt K.. The Initial Stages of the Hydrogen-Induced Reconstruction of Pd(110) Studied with STM. Surface Sci. 2006;600(18):4113–4118. doi: 10.1016/j.susc.2006.01.130. DOI
Saldan I., Moumaneix L., Umer M., Pavlinak D., Rihova M., Kolibalova E., Petrus J., Kallio T., Vandichel M., Macak J. M.. Palladium Nanocubes with {100} Facets for Hydrogen Evolution Reaction: Synthesis, Experiment, and Theory. Small. 2025;21(11):2408788. doi: 10.1002/smll.202408788. PubMed DOI PMC
Tew M. W., Miller J. T., van Bokhoven J. A.. Particle Size Effect of Hydride Formation and Surface Hydrogen Adsorption of Nanosized Palladium Catalysts: L3 Edge vs K Edge X-ray Absorption Spectroscopy. J. Phys. Chem. C. 2009;113(34):15140–15147. doi: 10.1021/jp902542f. DOI
Santana Santos C., Jaato B. N., Sanjuán I., Schuhmann W., Andronescu C.. Operando Scanning Electrochemical Probe Microscopy during Electrocatalysis. Chem. Rev. 2023;123(8):4972–5019. doi: 10.1021/acs.chemrev.2c00766. PubMed DOI PMC
Bandarenka A. S., Maljusch A., Kuznetsov V., Eckhard K., Schuhmann W.. Localized Impedance Measurements for Electrochemical Surface Science. J. Phys. Chem. C. 2014;118(17):8952–8959. doi: 10.1021/jp412505p. DOI
Iffelsberger C., Wert S., Matysik F.-M., Pumera M.. Catalyst Formation and In Operando Monitoring of the Electrocatalytic Activity in Flow Reactors. ACS Appl. Mater. Interfaces. 2021;13(30):35777–35784. doi: 10.1021/acsami.1c09127. PubMed DOI
Niu H.-J., Yan Y., Jiang S., Liu T., Sun T., Zhou W., Guo L., Li J.. Interfaces Decrease the Alkaline Hydrogen-Evolution Kinetics Energy Barrier on NiCoP/Ti3C2Tx MXene. ACS Nano. 2022;16(7):11049–11058. doi: 10.1021/acsnano.2c03711. PubMed DOI
Sun T., Yu Y., Zacher B. J., Mirkin M. V.. Scanning Electrochemical Microscopy of Individual Catalytic Nanoparticles. Angew. Chem., Int. Ed. 2014;53(51):14120–14123. doi: 10.1002/anie.201408408. PubMed DOI
Asserghine A., Medvidović-Kosanović M., Stanković A., Nagy L., Souto R. M., Nagy G.. A Scanning Electrochemical Microscopy Characterization of the Localized Corrosion Reactions Occurring on Nitinol in Saline Solution after Anodic Polarization. Sens. Actuators, B: Chem. 2020;321:128610. doi: 10.1016/j.snb.2020.128610. DOI
Ngoipala A., Schott C., Briega-Martos V., Qamar M., Mrovec M., Javan Nikkhah S., Schmidt T. O., Deville L., Capogrosso A., Moumaneix L., Kallio T., Viola A., Maillard F., Drautz R., Bandarenka A. S., Cherevko S., Vandichel M., Gubanova E. L.. Hydride-Induced Reconstruction of Pd Electrode Surfaces: A Combined Computational and Experimental Study. Adv. Mater. 2024;37:2410951. doi: 10.1002/adma.202410951. PubMed DOI PMC
Weng Y.-C., Hsieh C.-T.. Scanning Electrochemical Microscopy Characterization of Bimetallic Pt–M (M = Pd, Ru, Ir) Catalysts for Hydrogen Oxidation. Electrochim. Acta. 2011;56(5):1932–1940. doi: 10.1016/j.electacta.2010.12.029. DOI
Wang Y., Wipf D. O.. Visualizing Hydrogen Oxidation Reaction Activity of Polycrystalline Platinum by Scanning Electrochemical Microscopy. J. Electrochem. Soc. 2020;167(14):146502. doi: 10.1149/1945-7111/abbf28. DOI
Selva J. S. G., Sukeri A., Bacil R. P., Serrano S. H. P., Bertotti M.. Electrocatalysis of the Hydrogen Oxidation Reaction on a Platinum-Decorated Nanoporous Gold Surface Studied by Scanning Electrochemical Microscopy. J. Electroanal. Chem. 2023;934:117294. doi: 10.1016/j.jelechem.2023.117294. DOI
Zhou J., Zu Y., Bard A. J.. Scanning Electrochemical Microscopy: Part 39. The Proton/Hydrogen Mediator System and Its Application to the Study of the Electrocatalysis of Hydrogen Oxidation. J. Electroanal. Chem. 2000;491(1–2):22–29. doi: 10.1016/S0022-0728(00)00100-5. DOI
Eckhard K., Chen X., Turcu F., Schuhmann W.. Redox Competition Mode of Scanning Electrochemical Microscopy (RC-SECM) for Visualization of Local Catalytic Activity. Phys. Chem. Chem. Phys. 2006;8(23):5359–5365. doi: 10.1039/b609511a. PubMed DOI
Fernández J. L., Bard A. J.. Scanning Electrochemical Microscopy. 47. Imaging Electrocatalytic Activity for Oxygen Reduction in an Acidic Medium by the Tip Generation–Substrate Collection Mode. Anal. Chem. 2003;75(13):2967–2974. doi: 10.1021/ac0340354. PubMed DOI
Nagaiah T. C., Schäfer D., Schuhmann W., Dimcheva N.. Electrochemically Deposited Pd–Pt and Pd–Au Codeposits on Graphite Electrodes for Electrocatalytic H2O2 Reduction. Anal. Chem. 2013;85(16):7897–7903. doi: 10.1021/ac401317y. PubMed DOI
Eckhard K., Schuhmann W.. Localised Visualisation of O2 Consumption and H2O2 Formation by Means of SECM for the Characterisation of Fuel Cell Catalyst Activity. Electrochim. Acta. 2007;53(3):1164–1169. doi: 10.1016/j.electacta.2007.02.028. DOI
Sarpey T. K., Himmelreich A. V., Song K.-T., Gubanova E. L., Bandarenka A. S.. The Electrocatalytic Activity of Au Electrodes Changes Significantly in Various Na+/K+ Supporting Electrolyte Mixtures. Small Sci. 2024;4(7):2400042. doi: 10.1002/smsc.202400042. PubMed DOI PMC
Ding X., Scieszka D., Watzele S., Xue S., Garlyyev B., Haid R. W., Bandarenka A. S.. A Systematic Study of the Influence of Electrolyte Ions on the Electrode Activity. ChemElectroChem. 2022;9(1):e202101088. doi: 10.1002/celc.202101088. DOI
Haid R. W., Ding X., Sarpey T. K., Bandarenka A. S., Garlyyev B.. Exploration of the Electrical Double-Layer Structure: Influence of Electrolyte Components on the Double-Layer Capacitance and Potential of Maximum Entropy. Curr. Opin. Electrochem. 2022;32:100882. doi: 10.1016/j.coelec.2021.100882. DOI
Bender J. T., Petersen A. S., Østergaard F. C., Wood M. A., Heffernan S. M. J., Milliron D. J., Rossmeisl J., Resasco J.. Understanding Cation Effects on the Hydrogen Evolution Reaction. ACS Energy Lett. 2023;8(1):657–665. doi: 10.1021/acsenergylett.2c02500. DOI
Schott C., Hofbauer L., Gubanova E., Schneider P., Bandarenka A. S.. Scanning Impedance Microscopy under Oxygen Reduction Reaction Conditions. Proof of the Concept. Electrochim. Acta. 2025;513:145533. doi: 10.1016/j.electacta.2024.145533. DOI
Kibler L. A., Kleinert M., Randler R., Kolb D. M.. Initial Stages of Pd Deposition on Au(hkl) Part I: Pd on Au(111) Surf. Sci. 1999;443(1–2):19–30. doi: 10.1016/S0039-6028(99)00968-1. DOI
Haid R. W., Kluge R. M., Liang Y., Bandarenka A. S.. In Situ Quantification of the Local Electrocatalytic Activity via Electrochemical Scanning Tunneling Microscopy. Small Methods. 2021;5(2):2000710. doi: 10.1002/smtd.202000710. PubMed DOI
Bawab B., Thalluri S. M., Rodriguez-Pereira J., Sopha H., Zazpe R., Macak J. M.. Anodic TiO2 Nanotube Layers Decorated by Pd Nanoparticles Using ALD: An Efficient Electrocatalyst for Methanol Oxidation. Electrochim. Acta. 2022;429:141044. doi: 10.1016/j.electacta.2022.141044. DOI
Durst J., Siebel A., Simon C., Hasché F., Herranz J., Gasteiger H. A.. New Insights into the Electrochemical Hydrogen Oxidation and Evolution Reaction Mechanism. Energy Environ. Sci. 2014;7(7):2255–2260. doi: 10.1039/C4EE00440J. DOI
Monteiro M. C. O., Goyal A., Moerland P., Koper M. T. M.. Understanding Cation Trends for Hydrogen Evolution on Platinum and Gold Electrodes in Alkaline Media. ACS Catal. 2021;11(23):14328–14335. doi: 10.1021/acscatal.1c04268. PubMed DOI PMC
Xue S., Garlyyev B., Watzele S., Liang Y., Fichtner J., Pohl M. D., Bandarenka A. S.. Influence of Alkali Metal Cations on the Hydrogen Evolution Reaction Activity of Pt, Ir, Au, and Ag Electrodes in Alkaline Electrolytes. ChemElectroChem. 2018;5(17):2326–2329. doi: 10.1002/celc.201800690. DOI
Ledezma-Yanez I., Wallace W. D. Z., Sebastián-Pascual P., Climent V., Feliu J. M., Koper M. T. M.. Interfacial Water Reorganization as a pH-Dependent Descriptor of the Hydrogen Evolution Rate on Platinum Electrodes. Nature Energy. 2017;2:17031. doi: 10.1038/nenergy.2017.31. DOI
Sarpey, T. K. ; Keles, E. ; Gubanova, E. L. ; Bandarenka, A. S. . Probing the Electrified Solid–Liquid Interfaces with Laser-Induced Transient Techniques. In Encyclopedia of Solid-Liquid Interfaces; 2024; pp. 43–58. DOI: 10.1016/B978-0-323-85669-0.00045-3. DOI