Expanding the Family of Monosubstituted 15-Membered Pyridine-Based Macrocyclic Ligands for Mn(II) Complexation in the Context of MRI

. 2025 Apr 28 ; 64 (16) : 8205-8221. [epub] 20250411

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40215259

As Mn(II) complexes attract continuous interest as alternatives to Gd-based contrast agents (CAs) in clinical magnetic resonance imaging (MRI), we synthesized two monosubstituted derivatives of the 15-membered pyridine-based macrocycle 15-pyN3O2 bearing either a 2-pyridylmethyl (L2) or a 2-benzimidazolylmethyl pendant arm (L3) and characterized their Mn(II) complexes MnL2 and MnL3 in the context of MRI contrast agent development. Their X-ray molecular structures confirmed a coordination number of seven and a pentagonal bipyramidal geometry with one coordination site available for inner-sphere water. Protonation constants of L2 and L3, and stability constants with selected divalent metal ions were determined using potentiometry. MnL2 and MnL3 complexes are fully formed at pH 7.4; however, they both display low kinetic inertness due to a significant spontaneous dissociation of the nonprotonated complex. The presence of one inner-sphere water molecule in the Mn(II) complexes was confirmed by 17O NMR and 1H NMRD measurements. The water exchange rate constants are very low (kex298 = 0.46 × 107 and 0.23 × 107 s-1 for MnL2 and MnL3, respectively), but typical for Mn(II) complexes of 15-pyN3O2 derivatives. The relaxivities are in good agreement with monohydrated small-molecular-weight Mn(II) chelates (r1 = 2.49 and 2.77 mM-1 s-1 at 20 MHz, 25 °C, for MnL2 and MnL3, respectively).

Zobrazit více v PubMed

Yan G.; Zhuo R. Research progress of magnetic resonance imaging contrast agents. Chin. Sci. Bull. 2001, 46, 1233–1237. 10.1007/BF03184316. DOI

Rinck P. A.Magnetic Resonance in Medicine. A Peer-Reviewed Critical Introduction. e-Textbook, 14th ed.; The Round Table Foundation (TRTF): TwinTree Media, 2024. www.magnetic-resonance.org.

Merbach A.; Tóth É.. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging; Wiley, 2013.

Daksh S.; Kaul A.; Deep S.; Datta A. Current advancement in the development of manganese complexes as magnetic resonance imaging probes. J. Inorg. Biochem. 2022, 237, 112018 10.1016/j.jinorgbio.2022.112018. PubMed DOI

Cheng S.; Abramova L.; Saab C.; Turabelidze G.; Patel P.; Arduino M.; Hess T.; Kallen A.; Jhung M. Nephrogenic fibrosing dermopathy associated with exposure to gadolinium-containing contrast agents - St. Louis, Missouri, 2002–2006. JAMA, J. Am. Med. Assoc. 2007, 297 (14), 1542 10.1001/jama.297.14.1542. DOI

Grobner T. Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?. Nephrol. Dial. Transplant. 2006, 21 (4), 1104–1108. 10.1093/ndt/gfk062. PubMed DOI

McDonald R. J.; McDonald J. S.; Kallmes D. F.; Jentoft M. E.; Murray D. L.; Thielen K. R.; Wiliamson E. E.; Eckel L. J. Intracranial Gadolinium Deposition after Contrast-enhanced MR Imaging. Radiology 2015, 275 (3), 772–782. 10.1148/radiol.15150025. PubMed DOI

Zhang Z.; Jiang W.; Gu T.; Guo N.; Sun R.; Zeng Y.; Han Y.; Yu K. Anthropogenic gadolinium contaminations in the marine environment and its ecological implications. Environ. Pollut. 2024, 359, 124740 10.1016/j.envpol.2024.124740. PubMed DOI

Drahoš B.; Lukeš I.; Tóth É. Manganese(II) Complexes as Potential Contrast Agents for MRI. Eur. J. Inorg. Chem. 2012, 2012, 1975–1986. 10.1002/ejic.201101336. DOI

Henoumont C.; Devreux M.; Laurent S. Mn-Based MRI Contrast Agents: An Overview. Molecules 2023, 28, 7275. 10.3390/molecules28217275. PubMed DOI PMC

Troughton J. S.; Greenfield M. T.; Greenwood J. M.; Dumas S.; Wiethoff A. J.; Wang J.; Spiller M.; McMurry T. J.; Caravan P. Synthesis and Evaluation of a High Relaxivity Manganese(II)-Based MRI Contrast Agent. Inorg. Chem. 2004, 43 (20), 6313–6323. 10.1021/ic049559g. PubMed DOI

Rivera-Mancía S.; Rios C.; Montes S. Manganese accumulation in the CNS and associated pathologies. BioMetals 2011, 24, 811–825. 10.1007/s10534-011-9454-1. PubMed DOI

Kuźnik N.; Wyskocka M. Iron(III) Contrast Agent Candidates for MRI: a Survey of the Structure–Effect Relationship in the Last 15 Years of Studies. Eur. J. Inorg. Chem. 2016, 2016, 445–458. 10.1002/ejic.201501166. DOI

Kras E. A.; Snyder E. M.; Sokolow G. E.; Morrow J. R. Distinct Coordination Chemistry of Fe(III)-Based MRI Probes. Acc. Chem. Res. 2022, 55, 1435–1444. 10.1021/acs.accounts.2c00102. PubMed DOI

Chen S.; An L.; Yang S. Low-Molecular-Weight Fe(III) Complexes for MRI Contrast Agents. Molecules 2022, 27 (14), 4573. 10.3390/molecules27144573. PubMed DOI PMC

ClinicalTrials.gov, 2023. https://clinicaltrials.gov/ct2/show/NCT05413668 (accessed Oct 23).

Mewis R. E.; Archibald S. Biomedical applications of macrocyclic ligand complexes. Coord. Chem. Rev. 2010, 254, 1686–1712. 10.1016/j.ccr.2010.02.025. DOI

Kueny-Stotz M.; Garofalo A.; Felder-Flesh D. Manganese-Enhanced MRI Contrast Agents: From Small Chelates to Nanosized Hybrids. Eur. J. Inorg. Chem. 2012, 2012, 1987–2005. 10.1002/ejic.201101163. DOI

Wan F.; Wu L.; Chen X.; Zhan Y.; Jianng L. Research progress on manganese complexes as contrast agents for magnetic resonance imaging. Polyhedron 2023, 242, 116489 10.1016/j.poly.2023.116489. DOI

Drahoš B.; Kotek J.; Císařová I.; Hermann P.; Helm L.; Lukeš I.; Tóth É. Mn PubMed DOI

Garda Z.; Molnár E.; Hamon N.; Barriada J. L.; Esteban-Gómez D.; Váradi B.; Nagy V.; Pota K.; Kálmán F. K.; Tóth I.; Lihi N.; Platas-Iglesias C.; Tóth É.; Tripier R.; Tircsó G. Complexation of Mn(II) by Rigid Pyclen Diacetates: Equilibrium, Kinetic, Relaxometric, Density Functional Theory, and Superoxide Dismutase Activity Studies. Inorg. Chem. 2021, 60, 1133–1148. 10.1021/acs.inorgchem.0c03276. PubMed DOI

Botár R.; Molnar E.; Trencsenyi G.; Kiss J.; Kálmán F. K.; Tircsó G. Stable and Inert Mn(II)-Based and pH-Responsive Contrast Agents. J. Am. Chem. Soc. 2020, 142, 1662–1666. 10.1021/jacs.9b09407. PubMed DOI

Kálmán F. K.; Nagy V.; Váradi B.; Garda Z.; Molnár E.; Trencsényi G.; Kiss J.; Même S.; Même W.; Tóth É.; Tircsó G. Mn(II)-Based MRI Contrast Agent Candidate for Vascular Imaging. J. Med. Chem. 2020, 63, 6057–6065. 10.1021/acs.jmedchem.0c00197. PubMed DOI

Hall R. C.; Qin J.; Laney V.; Ayat N.; Lu Z. Manganese(II) EOB-Pyclen Diacetate for Liver-Specific MRI. ACS Appl. Bio Mater. 2022, 5, 451–458. 10.1021/acsabm.1c01259. PubMed DOI

Váradi B.; Brezovcsik K.; Garda Z.; Madarasi E.; Szedlacsek H.; Badea R.-A.; Vasilescu A.-M.; Puiu A.-G.; Ionescu A. E.; Sima L.-E.; Munteanu C. V. A.; Călăraş S.; Vágner A.; Szikra D.; Toàn N. M.; Nagy T.; Szűcs Z.; Szedlacsek S.; Nagy G.; Tirscó G. Synthesis and characterization of a novel [ DOI

Csupász T.; Szücs D.; Kálmán F. K.; Hollóczki O.; Fekete A.; Szikra D.; Tóth É.; Tóth I.; Tircsó G. A New Oxygen Containing Pyclen-Type Ligand as a Manganese(II) Binder for MRI and PubMed DOI PMC

Ndiaye D.; Sy M.; Pallier A.; Même S.; Da Silva I.; Lacerda S.; Nonat A. M.; Charbonnière L. J.; Tóth É. Unprecedented Kinetic Inertness for a Mn PubMed DOI

Ndiaye D.; Cieslik P.; Wadepohl H.; Pallier A.; Même S.; Comba P.; Tóth É. Mn PubMed DOI

Sy M.; Ndiaye D.; Da Silva I.; Lacerda S.; Charbonnière L. J.; Tóth É.; Nonat A. M. PubMed DOI

Drahoš B.; Kotek J.; Hermann P.; Lukeš I.; Tóth É. Mn PubMed DOI

Pota K.; Molnár E.; Kálmán F. K.; Freire D. M.; Tircsó G.; Green K. N. Manganese Complex of a Rigidified 15-Membered Macrocycle: A Comprehensive Study. Inorg. Chem. 2020, 59 (16), 11366–11376. 10.1021/acs.inorgchem.0c01053. PubMed DOI PMC

Pražáková M.; Ndiaye D.; Tóth É.; Drahoš B. A seven-coordinate Mn(II) complex with a pyridine-based 15-membered macrocyclic ligand containing one acetate pendant arm: structure, stability and relaxation properties. Dalton Trans. 2023, 52, 7936–7947. 10.1039/D3DT00701D. PubMed DOI

Zhang J.; Cui H.; Hojo M.; Shuang S.; Dong C. Synthesis and spectral studies of 2-[(N-ethyl carbazole)-3-sulfonyl ethylenediamine]-1- PubMed DOI

Prousek J. Preparation of 1-(2-benzimidazolyl)-2-substituted ethylene derivatives by the Wittig reaction. Collect. Czech. Chem. Commun. 1991, 56, 1358–1360. 10.1135/cccc19911358. DOI

Antal P.; Drahoš B.; Herchel R.; Travníček Z. Late First-Row Transition-Metal Complexes Containing a 2-Pyridylmethyl Pendant-Armed 15-Membered Macrocyclic Ligand. Field-Induced Slow Magnetic Relaxation in a Seven-Coordinate Cobalt(II) Compound. Inorg. Chem. 2016, 55, 5957–5972. 10.1021/acs.inorgchem.6b00415. PubMed DOI

Sheldrick G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8. 10.1107/S2053229614024218. PubMed DOI PMC

Dolomanov O. V.; Bourhis L. J.; Gildea R. J.; Howard J. A. K.; Puschmann H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. 10.1107/S0021889808042726. DOI

Macrae C. F.; Bruno I. J.; Chisholm J. A.; Edgington P. R.; McCabe P.; Pidcock E.; Rodriguez-Monge L.; Taylor R.; van de Streek J.; Wood P. A. Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470. 10.1107/S0021889807067908. DOI

Martell A. E.; Motekaitis R. J.. Determination and Use of Stability Constants; VCH Publishers, 1992.

Gans P.; Sabatini A.; Vacca A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 1996, 43 (10), 1739–1753. 10.1016/0039-9140(96)01958-3. PubMed DOI

Raiford D. S.; Fisk C. L.; Becker E. D. Calibration of Methanol and Ethylene Glycol Nuclear Magnetic Resonance Thermometers. Anal. Chem. 1979, 51 (12), 2050–2051. 10.1021/ac50048a040. DOI

Riley D. P.; Henke S. L.; Lennon P. J.; Weiss R. H.; Neumann W. L.; Rivers W. J. Jr.; Aston K. W.; Sample K. R.; Rahman H.; Ling C. S.; Shieh J. J.; Busch D. H.; Szulbinski W. Synthesis, Characterization, and Stability of Manganese(II) C-Substituted1,4,7,10,13-Pentaazacyclopentadecane Complexes Exhibiting Superoxide Dismutase Activity. Inorg. Chem. 1996, 35, 5213–5231. 10.1021/ic960262v. DOI

Dees A.; Zahl A.; Puchta R.; van Eikema Hommes N. J. R.; Heinemann F. W.; Ivanovic-Burmazovic I. Water Exchange on Seven-Coordinate Mn(II) Complexes with Macrocyclic Pentadentate Ligands: Insight in the Mechanism of Mn(II)SOD Mimetics. Inorg. Chem. 2007, 46, 2459–2470. 10.1021/ic061852o. PubMed DOI

Kim W. D.; Hrncir D. C.; Kiefer G. E.; Sherry A. D. Synthesis, Crystal Structure, and Potentiometry of Pyridine-Containing Tetraaza Macrocyclic Ligands with Acetate Pendant Arms. Inorg. Chem. 1995, 34, 2225–2232. 10.1021/ic00112a040. DOI

Meyer M.; Dahaoui-Gindrey V.; Lecomte C.; Guilard R. Conformations and coordination schemes of carboxylate and carbamoyl derivatives of the tetraazamacrocycles cyclen and cyclam, and the relation to their protonation states. Coord. Chem. Rev. 1998, 178–180, 1313–1405. 10.1016/S0010-8545(98)00169-6. DOI

El Majzoub A.; Cadiou C.; Déchamps-Olivier I.; Chuburu F.; Aplincourt M. (Benzimidazolylmethyl)cyclen: A Potential Sensitive Fluorescent PET Chemosensor for Zinc. Eur. J. Inorg. Chem. 2007, 2007 (32), 5087–5097. 10.1002/ejic.200700616. DOI

Uzal-Varela R.; Pérez-Fernández F.; Valencia L.; Rodríguez-Rodríguez A.; Platas-Iglesias C.; Caravan P.; Esteban-Gómez D. Thermodynamic Stability of Mn(II) Complexes with Aminocarboxylate Ligands Analyzed Using Structural Descriptors. Inorg. Chem. 2022, 61, 14173–14186. 10.1021/acs.inorgchem.2c02364. PubMed DOI PMC

Esteban-Gómez D.; Cassino C.; Botta M.; Platas-Iglesias C. DOI

Drahoš B.; Kubíček V.; Bonnet C. S.; Hermann P.; Lukeš I.; Tóth É. Dissociation kinetics of Mn PubMed DOI

Maigut J.; Meier R.; Zahl A.; van Eldik R. Effect of Chelate Dynamics on Water Exchange Reactions of Paramagnetic Aminopolycarboxylate Complexes. Inorg. Chem. 2008, 47, 5702–5719. 10.1021/ic702421z. PubMed DOI

Koenig S. H.; Baglin C.; Brown R. D. III.; Brewer C. F. Magnetic field dependence of solvent proton relaxation induced by Gd PubMed DOI

Bertini I.; Briganti F.; Xia Z.; Luchinat C. Nuclear Magnetic Relaxation Dispersion Studies of Hexaaquo Mn(II) Ions in Water-Glycerol Mixtures. J. Magn. Reson., Ser. A 1993, 101 (2), 198–201. 10.1006/jmra.1993.1030. DOI

Gale E. M.; Zhu J.; Caravan P. Direct Measurement of the Mn(II) Hydration State in Metal Complexes and Metalloproteins through PubMed DOI PMC

Peters J. A.; Geraldes C. F. G. C. A Semi-Empirical Method for the Estimation of the Hydration Number of Mn(II)-Complexes. Inorganics 2018, 6 (4), 116. 10.3390/inorganics6040116. DOI

Uzal-Varela R.; Valencia L.; Lalli D.; Maneiro M.; Esteban-Gómez D.; Platas-Iglesias C.; Botta M.; Rodríguez-Rodríguez A. Understanding the Effect of the Electron Spin Relaxation on the Relaxivities of Mn(II) Complexes with Triazacyclononane Derivatives. Inorg. Chem. 2021, 60, 15055–15068. 10.1021/acs.inorgchem.1c02057. PubMed DOI PMC

Ducommun Y.; Newmann K. E.; Merbach A. E. High-Pressure DOI

Rolla G.; de Biasio V.; Giovenzana G. B.; Botta M.; Tei L. Supramolecular assemblies based on amphiphilic Mn PubMed DOI

Loving G. S.; Mukherjee S.; Caravan P. Redox-Activated Manganese-Based MR Contrast Agent. J. Am. Chem. Soc. 2013, 135, 4620–4623. 10.1021/ja312610j. PubMed DOI PMC

Carli S.; Benazzi S.; Casarin L.; Bernardi T.; Bertolasi V.; Argazzi R.; Caramori S.; Bignozzi C. A. On the stability of manganese tris(β-diketonate) complexes as redox mediators in DSSCs. Phys. Chem. Chem. Phys. 2016, 18, 5949–5956. 10.1039/C5CP05524E. PubMed DOI

Pota K.; Garda Z.; Kálmán F. K.; Barriada J. L.; Esteban-Gómez D.; Platas-Iglesias C.; Tóth I.; Brücher E.; Tircsó G. Taking the next step toward inert Mn DOI

Drahoš B.; Císařová I.; Laguta O.; Santana V. T.; Neugebauer P.; Herchel R. Structural, magnetic, redox and theoretical characterization of seven-coordinate first-row transition metal complexes with a macrocyclic ligand containing two benzimidazolyl PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...