Environmental aspects of wastewater recycling from the point of view of emergent pollutant removal

. 2025 Apr ; 91 (7) : 876-892. [epub] 20250312

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40219596

Grantová podpora
SS02030008 Technology Agency of the Czech Republic
TJ04000322 Technology Agency of the Czech Republic
CZ.02.01.01/00/22_008/0004605 Ministerstvo Školství, Mládeže a Tělovýchovy

This study evaluates the removal efficiency of 15 estrogenic endocrine-disrupting compounds in two operational constructed wetlands with different designs: a hybrid system (constructed wetland A) and a horizontal system (constructed wetland B). The assessment involved analyzing composite water samples obtained from passive samplers through liquid chromatography-mass spectrometry coupled with yeast assays. Additionally, grab samples of sludge and sediment were examined to determine the endocrine-disrupting compound's adsorption efficacy. The application of the full logistic model enabled the discernment and ranking of the chemicals contributing to mixture toxicity. The findings revealed constructed wetland A's superior efficacy in the removal of individual endocrine-disrupting compounds (with an average efficiency of 94%) compared to constructed wetland B (60%). Furthermore, constructed wetland A displayed a higher estimated estrogenic activity removal efficiency (83%) relative to constructed wetland B (52%). Estrogenic activity was adequately accounted for (58-120%) in half of the analyzed samples, highlighting estrone as the primary estrogenic agent. The investigation underscores constructed wetlands' effectiveness in purging endocrine-disrupting compounds, suggesting that their integration as secondary or tertiary treatment systems for such pollutants removal merits further exploration.

Zobrazit více v PubMed

Avila C., Bayona J. M., Martin I., Salas J. J. & Garcia J. (2015) Emerging organic contaminant removal in a full-scale hybrid constructed wetland system for wastewater treatment and reuse, Ecological Engineering, 80, 108–116.

Azizi D., Arif A., Blair D., Dionne J., Filion Y., Ouarda Y., Pazmino A. G., Pulicharla R., Rilstone V., Tiwari B., Vignale L., Brar S. K., Champagne P., Drogui P., Langlois V. S. & Blais J. F. (2022) A comprehensive review on current technologies for removal of endocrine disrupting chemicals from wastewaters, Environmental Research, 207, 112196. PubMed

Bartelt-Hunt S. L., Snow D. D., Damon-Powell T., Brown D. L., Prasai G., Schwarz M. & Kolok A. S. (2011) Quantitative evaluation of laboratory uptake rates for pesticides, pharmaceuticals, and steroid hormones using POCIS, Environmental Toxicology and Chemistry, 30, 1412–1420. PubMed

Burkhardt-Holm P. (2010) Endocrine disruptors and water quality: a state-of-the-art review, International Journal of Water Resources Development, 26, 477–493.

Cai K., Elliott C. T., Phillips D. H., Scippo M. L., Muller M. & Connolly L. (2012) Treatment of estrogens and androgens in dairy wastewater by a constructed wetland system, Water Research, 46, 2333–2343. PubMed

Campos J. M., Queiroz S. C. N. & Roston D. M. (2019) Removal of the endocrine disruptors ethinyl estradiol, bisphenol A, and levonorgestrel by subsurface constructed wetlands, Science of The Total Environment, 693, 133514. PubMed

Carranza-Diaz O., Schultze-Nobre L., Moeder M., Nivala J., Kuschk P. & Koeser H. (2014) Removal of selected organic micropollutants in planted and unplanted pilot-scale horizontal flow constructed wetlands under conditions of high organic load, Ecological Engineering, 71, 234–245.

Černá T., Ezechiáš M., Semerád J., Grasserová A. & Cajthaml T. (2022) Evaluation of estrogenic and antiestrogenic activity in sludge and explanation of individual compound contributions, Journal of Hazardous Materials, 423, 127108.

Chen J., Liu S. S., Wang Y. J., Li J., Liu Y. S., Yang F. & Ying G. G. (2021) Optimized constructed wetlands enhance the removal and reduce the risks of steroid hormones in domestic wastewater, Science of The Total Environment, 757, 143773. PubMed

Dai Y. N., D A., Yang Y., Tam N. F. Y., Tai Y. P. & Tang X. Y. (2016) Factors affecting behavior of phenolic endocrine disruptors, estrone and estradiol, in constructed wetlands for domestic sewage treatment, Environmental Science & Technology, 50, 11844–11852.

Ezechiáš M. & Cajthaml T. (2016) Novel full logistic model for estimation of the estrogenic activity of chemical mixtures, Toxicology, 359, 58–70.

Gikas G. D., Papaevangelou V. A., Tsihrintzis V. A., Antonopoulou M. & Konstantinou I. K. (2021) Removal of emerging pollutants in horizontal subsurface flow and vertical flow pilot-scale constructed wetlands, Processes, 9 (12), 1–18. https://doi.org/10.3390/pr9122200.

Han Y., Qi C., Niu Z., Li N. & Tang J. (2024) Occurrence and risk assessment of endocrine-disrupting chemicals in wastewater treatment plants in the Chaohu Lake Basin, Frontiers in Environmental Science, 12, 1–15. https://doi.org/10.3389/fenvs.2024.1409011.

Harman C., Allan I. J. & Vermeirssen E. L. M. (2012) Calibration and use of the polar organic chemical integrative sampler – a critical review, Environmental Toxicology and Chemistry, 31, 2724–2738. PubMed

He Y. J., Nurul S., Schmitt H., Sutton N. B., Murk T. A. J., Blokland M. H., Rijnaarts H. H. M. & Langenhoff A. A. M. (2018) Evaluation of attenuation of pharmaceuticals, toxic potency, and antibiotic resistance genes in constructed wetlands treating wastewater effluents, Science of The Total Environment, 631–632, 1572–1581.

Herrera-Melian J. A., Guedes-Alonso R., Borreguero-Fabelo A., Santana-Rodriguez J. J. & Sosa-Ferrera Z. (2018) Study on the removal of hormones from domestic wastewaters with lab-scale constructed wetlands with different substrates and flow directions, Environmental Science and Pollution Research, 25, 20374–20384. PubMed

Hijosa-Valsero M., Matamoros V., Martin-Villacorta J., Becares E. & Bayona J. M. (2010a) Assessment of full-scale natural systems for the removal of PPCPs from wastewater in small communities, Water Research, 44, 1429–1439. PubMed

Hijosa-Valsero M., Matamoros V., Sidrach-Cardona R., Martin-Villacorta J., Becares E. & Bayona J. M. (2010b) Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters, Water Research, 44, 3669–3678. PubMed

Hijosa-Valsero M., Reyes-Contreras C., Dominguez C., Becares E. & Bayona J. M. (2016) Behaviour of pharmaceuticals and personal care products in constructed wetland compartments: influent, effluent, pore water, substrate and plant roots, Chemosphere, 145, 508–517. PubMed

Ilyas H. & van Hullebusch E. D. (2020) A review on the occurrence, fate and removal of steroidal hormones during treatment with different types of constructed wetlands, Journal of Environmental Chemical Engineering, 8, 103793.

Kättström D., Beronius A., Boije af Gennäs U., Rudén C. & Ågerstrand M. (2025) Impact of the new hazard classes in the CLP regulation on EU chemicals legislation, Environmental Sciences Europe, 37 (1), 19. https://doi.org/10.1186/s12302-025-01054-4. PMC

Lundqvist J., Mandava G., Lungu-Mitea S., Lai F. Y. & Ahrens L. (2019) In vitro bioanalytical evaluation of removal efficiency for bioactive chemicals in Swedish wastewater treatment plants, Scientific Reports, 9, 7166. PubMed PMC

Matamoros V. & Salvado V. (2012) Evaluation of the seasonal performance of a water reclamation pond-constructed wetland system for removing emerging contaminants, Chemosphere, 86, 111–117. PubMed

Morin N., Camilleri J., Cren-Olivé C., Coquery M. & Miège C. (2013) Determination of uptake kinetics and sampling rates for 56 organic micropollutants using ‘pharmaceutical’ POCIS, Talanta, 109, 61–73. PubMed

Neale P. A., O'Brien J. W., Glauch L., Konig M., Krauss M., Mueller J. F., Tscharke B. & Escher B. I. (2020) Wastewater treatment efficacy evaluated with in vitro bioassays, Water Research, 9, 100072.

Ngeno E., Ongulu R., Orata F., Matovu H., Shikuku V., Onchiri R., Mayaka A., Majanga E., Getenga Z., Gichumbi J. & Ssebugere P. (2023) Endocrine disrupting chemicals in wastewater treatment plants in Kenya, East Africa: concentrations, removal efficiency, mass loading rates and ecological impacts, Environmental Research, 237, 1–12. https://doi.org/10.1016/j.envres.2023.117076. PubMed

Nguyen P. M., Afzal M., Ullah I., Shahid N., Baqar M. & Arslan M. (2019) Removal of pharmaceuticals and personal care products using constructed wetlands: effective plant-bacteria synergism may enhance degradation efficiency, Environmental Science and Pollution Research, 26, 21109–21126. PubMed

Nivala J., Neale P. A., Haasis T., Kahl S., Konig M., Muller R. A., Reemtsma T., Schlichtinge R. & Escher B. I. (2018) Application of cell-based bioassays to evaluate treatment efficacy of conventional and intensified treatment wetlands, Environmental Science-Water Research & Technology, 4, 206–217.

Papaevangelou V. A., Gikas G. D., Tsihrintzis V. A., Antonopoulou M. & Konstantinou I. K. (2016) Removal of endocrine disrupting chemicals in HSF and VF pilot-scale constructed wetlands, Chemical Engineering Journal, 294, 146–156.

Qing Z. M., Dong H. Y., Zhu B., Qu J. H. & Nie Y. F. (2013) A comparison of various rural wastewater treatment processes for the removal of endocrine-disrupting chemicals (EDCs), Chemosphere, 92, 986–992. PubMed

Routledge E. J. & Sumpter J. P. (1996) Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen, Environmental Toxicology and Chemistry, 15, 241–248.

Šereš M., Innemanová P., Hnatková T., Rozkošný M., Stefanakis A., Semerád J. & Cajthaml T. (2021) Evaluation of hybrid constructed wetland performance and reuse of treated wastewater in agricultural irrigation, Water, 13, 1165.

Shappell N. W., Billey L. O., Forbes D., Matheny T. A., Poach M. E., Reddy G. B. & Hunt P. G. (2007) Estrogenic activity and steroid hormones in swine wastewater through a lagoon constructed-wetland system, Environmental Science & Technology, 41, 444–450.

Sklarz M. Y., Gross A., Yakirevich A. & Soares M. I. M. (2009) A recirculating vertical flow constructed wetland for the treatment of domestic wastewater, Desalination, 246, 617–624.

Song H. L., Yang X. L., Nakano K., Nomura M., Nishimura O. & Li X. N. (2011) Elimination of estrogens and estrogenic activity from sewage treatment works effluents in subsurface and surface flow constructed wetlands, International Journal of Environmental Analytical Chemistry, 91, 600–614.

Toro-Velez A. F., Madera-Parra C. A., Pena-Varon M. R., Lee W. Y., Bezares-Cruz J. C., Walker W. S., Cardenas-Henao H., Quesada-Calderon S., Garcia-Hernandez H. & Lens P. N. L. (2016) BPA and NP removal from municipal wastewater by tropical horizontal subsurface constructed wetlands, Science of The Total Environment, 542, 93–101. PubMed

Tousova Z., Vrana B., Smutna M., Novak J., Klucarova V., Grabic R., Slobodnik J., Giesy J. P. & Hilscherova K. (2019) Analytical and bioanalytical assessments of organic micropollutants in the Bosna River using a combination of passive sampling, bioassays and multi-residue analysis, Science of The Total Environment, 650, 1599–1612. PubMed

Vallejo A., Prieto A., Moeder M., Usobiaga A., Zuloaga O., Etxebarria N. & Paschke A. (2013) Calibration and field test of the polar organic chemical integrative samplers for the determination of 15 endocrine disrupting compounds in wastewater and river water with special focus on performance reference compounds (PRC), Water Research, 47, 2851–2862. PubMed

Venditti S., Brunhoferova H. & Hansen J. (2022) Behaviour of 27 selected emerging contaminants in vertical flow constructed wetlands as post-treatment for municipal wastewater, Science of The Total Environment, 819, 153234. PubMed

Verlicchi P. & Zambello E. (2015) Pharmaceuticals and personal care products in untreated and treated sewage sludge: occurrence and environmental risk in the case of application on soil – a critical review, Science of the Total Environment, 538, 750–767. PubMed

Vymazal J. (2005) Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment, Ecological Engineering, 25, 478–490.

Vymazal J., Brezinova T. & Kozeluh M. (2015) Occurrence and removal of estrogens, progesterone and testosterone in three constructed wetlands treating municipal sewage in the Czech republic, Science of the Total Environment, 536, 625–631. PubMed

Vystavna Y., Frkova Z., Marchand L., Vergeles Y. & Stolberg F. (2017) Removal efficiency of pharmaceuticals in a full scale constructed wetland in East Ukraine, Ecological Engineering, 108, 50–58.

Wirasnita R., Mori K. & Toyama T. (2018) Effect of activated carbon on removal of four phenolic endocrine-disrupting compounds, bisphenol A, bisphenol F, bisphenol S, and 4-tert-butylphenol in constructed wetlands, Chemosphere, 210, 717–725. PubMed

Wu H. M., Zhang J., Ngo H. H., Guo W. S., Hu Z., Liang S., Fan J. L. & Liu H. (2015) A review on the sustainability of constructed wetlands for wastewater treatment: design and operation, Bioresource Technology, 175, 594–601. PubMed

Yost E. E., Meyer M. T., Dietze J. E., Meissner B. M., Worley-Davis L., Williams C. M., Lee B. & Kullman S. W. (2013) Comprehensive assessment of hormones, phytoestrogens, and estrogenic activity in an anaerobic swine waste lagoon, Environmental Science & Technology, 47, 13781–13790. PMC

Yu Q. M., Yang X. D., Zhao F. Z., Hu X. D., Guan L. C., Ren H. Q. & Geng J. J. (2022) Spatiotemporal variation and removal of selected endocrine-disrupting chemicals in wastewater treatment plants across China: treatment process comparison, Science of The Total Environment, 835, 155374. PubMed

Zhang D. Q., Gersberg R. M., Zhu J. F., Hua T., Jinadasa K. & Tan S. K. (2012) Batch versus continuous feeding strategies for pharmaceutical removal by subsurface flow constructed wetland, Environmental Pollution, 167, 124–131. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...