• This record comes from PubMed

Genotype/Phenotype Relationship: Lessons From 137 Patients With PMM2-CDG

. 2024 ; 2024 () : 8813121. [epub] 20241003

Language English Country United States Media electronic-ecollection

Document type Journal Article, Multicenter Study, Observational Study

We report on the largest single dataset of patients with PMM2-CDG enrolled in an ongoing international, multicenter natural history study collecting genetic, clinical, and biological information to evaluate similarities with previous studies, report on novel findings, and, additionally, examine potential genotype/phenotype correlations. A total of 137 participants had complete genotype information, representing 60 unique variants, of which the most common were found to be p.Arg141His in 58.4% (n = 80) of participants, followed by p.Pro113Leu (21.2%, n = 29), and p.Phe119Leu (12.4%, n = 17), consistent with previous studies. Interestingly, six new variants were reported, comprised of five missense variants (p.Pro20Leu, p.Tyr64Ser, p.Phe68Cys, p.Tyr76His, and p.Arg238His) and one frameshift (c.696del p.Ala233Argfs∗100). Patient phenotypes were characterized via the Nijmegen Progression CDG Rating Scale (NPCRS), together with biochemical parameters, the most consistently dysregulated of which were coagulation factors, specifically antithrombin (below normal in 79.5%, 93 of 117), in addition to Factor XI and protein C activity. Patient genotypes were classified based upon the predicted pathogenetic mechanism of disease-associated mutations, of which most were found in the catalysis/activation, folding, or dimerization regions of the PMM2 enzyme. Two different approaches were used to uncover genotype/phenotype relationships. The first characterized genotype only by the predicted pathogenic mechanisms and uncovered associated changes in biochemical parameters, not apparent using only NPCRS, involving catalysis/activation, dimerization, folding, and no protein variants. The second approach characterized genotype by the predicted pathogenic mechanism and/or individual variants when paired with a subset of severe nonfunctioning variants and uncovered correlations with both NPCRS and biochemical parameters, demonstrating that p.Cys241Ser was associated with milder disease, while p.Val231Met, dimerization, and folding variants with more severe disease. Although determining comprehensive genotype/phenotype relationships has previously proven challenging for PMM2-CDG, the larger sample size, plus inclusion of biochemical parameters in the current study, has provided new insights into the interplay of genetics with disease. Trial Registration: NCT03173300.

Biochemistry and Genetics Department Bichat Claude Bernard Hospital AP HP University of Paris and Inserm U1149 Paris France

Center for Integrative Brain Research Seattle Children's Research Institute Seattle Washington USA

Centro de Genética Médica Centro Hospitalar Universitário de Santo António Porto Portugal

Child Neuropsychiatry Unit Department of Clinical and Experimental Medicine University of Catania Catania Italy

Children's Clinic Tartu University Hospital N Lunini Street 6 Tartu Estonia

Department of Clinical Genomics Mayo Clinic Rochester Minnesota USA

Department of Development and Regeneration Faculty of Medicine KU Leuven Leuven Belgium

Department of Genetics and Genomics Sciences Icahn School of Medicine at Mount Sinai New York City New York USA

Department of Genetics and Personalized Medicine Institute of Clinical Medicine University of Tartu L Puusepa Street 2 Tartu Estonia

Department of Inborn Errors of Metabolism and Paediatrics The Institute of Mother and Child Warsaw Poland

Department of Internal Medicine Radboud University Medical Centre Nijmegen Netherlands

Department of Laboratory Medicine and Pathology Mayo Clinic Rochester Minnesota USA

Department of Paediatrics Metabolic Disease Center University Hospitals Leuven Leuven Belgium

Department of Pediatrics and Inherited Metabolic Disorders 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Departments of Neurology and Pediatric and Adolescent Medicine Mayo Clinic Rochester Minnesota USA

Division of Genetic Medicine Department of Pediatrics University of Washington School of Medicine Seattle Washington USA

Division of Human Genetics Department of Pediatrics Children's Hospital of Philadelphia Pennsylvania USA

Genetics and Personalized Medicine Clinic Tartu University Hospital L Puusepa Street 2 Tartu Estonia

Glycomine Inc San Francisco California USA

Pediatric Neurology Department and Clinical Biochemistry and Genetics Units Hospital Sant Joan de Déu Institut de Recerca Sant Joan de Déu Barcelona Spain

Reference Center for Inborn Errors of Metabolism Necker Hospital APHP University of Paris Inserm UMR_S1163 INEM and Institut Imagine Filière G2M MetabERN Paris France

Research Unit of Rare Diseases and Neurodevelopmental Disorders Oasi Research Institute IRCCS Troina Italy

U 703 Centre for Biomedical Research on Rare Diseases Instituto de Salud Carlos 3 Barcelona Spain

See more in PubMed

Ferreira C. R., Rahman S., Keller M., Zschocke J., ICIMD Advisory Group An international classification of inherited metabolic disorders (ICIMD) Journal of Inherited Metabolic Disease . 2021;44(1):164–177. doi: 10.1002/jimd.12348. PubMed DOI PMC

Freeze H. H., Jaeken J., Matthijs G. CDG or not CDG. Journal of Inherited Metabolic Disease . 2022;45(3):383–385. doi: 10.1002/jimd.12498. PubMed DOI PMC

Ondruskova N., Cechova A., Hansikova H., Honzik T., Jaeken J. Congenital disorders of glycosylation: still "hot" in 2020. Biochimica et Biophysica Acta (BBA)-General Subjects . 2021;1865, article 129751(1) doi: 10.1016/j.bbagen.2020.129751. PubMed DOI

Jaeken J., Matthijs G. Congenital disorders of glycosylation. Annual Review of Genomics and Human Genetics . 2001;2(1):129–151. doi: 10.1146/annurev.genom.2.1.129. PubMed DOI

Altassan R., Péanne R., Jaeken J., et al. International clinical guidelines for the management of phosphomannomutase 2-congenital disorders of glycosylation: diagnosis, treatment and follow up. Journal of Inherited Metabolic Disease . 2019;42(1):5–28. doi: 10.1002/jimd.12024. PubMed DOI

Ligezka A. N., Radenkovic S., Saraswat M., et al. Sorbitol is a severity biomarker for PMM2-CDG with therapeutic implications. Annals of Neurology . 2021;90(6):887–900. doi: 10.1002/ana.26245. PubMed DOI PMC

Vals M. A., Morava E., Teeäär K., et al. Three families with mild PMM2-CDG and normal cognitive development. American Journal of Medical Genetics Part A . 2017;173(6):1620–1624. doi: 10.1002/ajmg.a.38235. PubMed DOI PMC

Charlwood J., Clayton P., Johnson A., Keir G., Mian N., Winchester B. A case of the carbohydrate-deficient glycoprotein syndrome type 1 (CDGS type 1) with normal phosphomannomutase activity. Journal of Inherited Metabolic Disease . 1997;20(6):817–827. doi: 10.1023/a:1005380003902. PubMed DOI

Citro V., Cimmaruta C., Monticelli M., et al. The analysis of variants in the general population reveals that PMM2 is extremely tolerant to missense mutations and that diagnosis of PMM2-CDG can benefit from the identification of modifiers. International Journal of Molecular Sciences . 2018;19(8):p. 2218. doi: 10.3390/ijms19082218. PubMed DOI PMC

Grünewald S., Matthijs G., Jaeken J. Congenital disorders of glycosylation: a review. Pediatric Research . 2002;52(5):618–624. doi: 10.1203/00006450-200211000-00003. PubMed DOI

Matthijs G., Schollen E., Pardon E., et al. Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13 in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome) Nature Genetics . 1997;16(1):88–92. doi: 10.1038/ng0597-88. PubMed DOI

Vaes L., Rymen D., Cassiman D., et al. Genotype-phenotype correlations in PMM2-CDG. Genes . 2021;12(11):p. 1658. doi: 10.3390/genes12111658. PubMed DOI PMC

Andreotti G., Cabeza de Vaca I., Poziello A., Monti M. C., Guallar V., Cubellis M. V. Conformational response to ligand binding in phosphomannomutase2: insights into inborn glycosylation disorder. The Journal of Biological Chemistry . 2014;289(50):34900–34910. doi: 10.1074/jbc.M114.586362. PubMed DOI PMC

Silvaggi N. R., Zhang C., Lu Z., Dai J., Dunaway-Mariano D., Allen K. N. The X-ray crystal structures of human alpha-phosphomannomutase 1 reveal the structural basis of congenital disorder of glycosylation type 1a. The Journal of Biological Chemistry . 2006;281(21):14918–14926. doi: 10.1074/jbc.M601505200. PubMed DOI

Martinsson T., Bjursell C., Stibler H., et al. Linkage of a locus for carbohydrate-deficient glycoprotein syndrome type I (CDG1) to chromosome 16p, and linkage disequilibrium to microsatellite marker D16S406. Human Molecular Genetics . 1994;3(11):2037–2042. PubMed

Lam C., Krasnewich D. M. [Updated 2021 May 20]. PMM2-CDG. In: Adam M. P., editor. GeneReviews® . Seattle: University of Washington; 2005. https://www.ncbi.nlm.nih.gov/books/NBK1110/ PubMed

Schollen E., Kjaergaard S., Legius E., Schwartz M., Matthijs G. Lack of Hardy-Weinberg equilibrium for the most prevalent PMM2 mutation in CDG-Ia (congenital disorders of glycosylation type Ia) European Journal of Human Genetics . 2000;8(5):367–371. doi: 10.1038/sj.ejhg.5200470. PubMed DOI

Karczewski K. J., Francioli L. C., Tiao G., et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature . 2020;581(7809):434–443. doi: 10.1038/s41586-020-2308-7. PubMed DOI PMC

Vals M. A., Pajusalu S., Kals M., Mägi R., Õunap K. The prevalence of PMM2-CDG in Estonia based on population carrier frequencies and diagnosed patients. JIMD Reports . 2018;39:13–17. doi: 10.1007/8904_2017_41. PubMed DOI PMC

Vaes L., Tiller G. E., Pérez B., et al. PMM2-CDG caused by uniparental disomy: case report and literature review. JIMD Reports . 2020;54(1):16–21. doi: 10.1002/jmd2.12122. PubMed DOI PMC

Achouitar S., Mohamed M., Gardeitchik T., et al. Nijmegen paediatric CDG rating scale: a novel tool to assess disease progression. Journal of Inherited Metabolic Disease . 2011;34(4):923–927. doi: 10.1007/s10545-011-9325-5. PubMed DOI PMC

Ligezka A. N., Mohamed A., Pascoal C., et al. Patient-reported outcomes and quality of life in PMM2-CDG. Molecular Genetics and Metabolism . 2022;136(2):145–151. doi: 10.1016/j.ymgme.2022.04.002. PubMed DOI

Briso-Montiano A., Del Caño-Ochoa F., Vilas A., et al. Insight on molecular pathogenesis and pharmacochaperoning potential in phosphomannomutase 2 deficiency, provided by novel human phosphomannomutase 2 structures. Journal of Inherited Metabolic Disease . 2022;45(2):318–333. doi: 10.1002/jimd.12461. PubMed DOI

Green G. H., Diggle P. J. On the operational characteristics of the Benjamini and Hochberg false discovery rate procedure. Statistical Applications in Genetics and Molecular Biology . 2007;6:p. 27. doi: 10.2202/1544-6115.1302. PubMed DOI

Serrano N. L., De Diego V., Cuadras D., et al. A quantitative assessment of the evolution of cerebellar syndrome in children with phosphomannomutase-deficiency (PMM2-CDG) Orphanet Journal of Rare Diseases . 2017;12(1):p. 155. doi: 10.1186/s13023-017-0707-0. PubMed DOI PMC

Richards S., Aziz N., Bale S., et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine . 2015;17(5):405–424. doi: 10.1038/gim.2015.30. PubMed DOI PMC

Grünewald S., Schollen E., Van Schaftingen E., Jaeken J., Matthijs G. High residual activity of PMM2 in patients' fibroblasts: possible pitfall in the diagnosis of CDG-Ia (phosphomannomutase deficiency) American Journal of Human Genetics . 2001;68(2):347–354. doi: 10.1086/318199. PubMed DOI PMC

Lipiński P., Bogdańska A., Tylki-Szymańska A. Congenital disorders of glycosylation: prevalence, incidence and mutational spectrum in the Polish population. Molecular Genetics and Metabolism Reports . 2021;27, article 100726 doi: 10.1016/j.ymgmr.2021.100726. PubMed DOI PMC

Pajusalu S., Vals M. A., Mihkla L., Šamarina U., Kahre T., Õunap K. The estimated prevalence of N-linked congenital disorders of glycosylation across various populations based on allele frequencies in general population databases. Frontiers in Genetics . 2021;12, article 719437 doi: 10.3389/fgene.2021.719437. PubMed DOI PMC

Yıldız Y., Arslan M., Çelik G., et al. Genotypes and estimated prevalence of phosphomannomutase 2 deficiency in Turkey differ significantly from those in Europe. American Journal of Medical Genetics Part A . 2020;182(4):705–712. doi: 10.1002/ajmg.a.61488. PubMed DOI

Vega A. I., Pérez-Cerdá C., Abia D., et al. Expression analysis revealing destabilizing mutations in phosphomannomutase 2 deficiency (PMM2-CDG): expression analysis of PMM2-CDG mutations. Journal of Inherited Metabolic Disease . 2011;34(4):929–939. doi: 10.1007/s10545-011-9328-2. PubMed DOI

Barone R., Carrozzi M., Parini R., et al. A nationwide survey of PMM2-CDG in Italy: high frequency of a mild neurological variant associated with the L32R mutation. Journal of Neurology . 2015;262(1):154–164. doi: 10.1007/s00415-014-7549-7. PubMed DOI

Westphal V., Peterson S., Patterson M., et al. Functional significance of PMM2 mutations in mildly affected patients with congenital disorders of glycosylation Ia. Genetics in Medicine . 2001;3(6):393–398. doi: 10.1097/00125817-200111000-00003. PubMed DOI

Casado M., O'Callaghan M. M., Montero R., et al. Mild clinical and biochemical phenotype in two patients with PMM2-CDG (congenital disorder of glycosylation Ia) The Cerebellum . 2012;11(2):557–563. doi: 10.1007/s12311-011-0313-y. PubMed DOI

Barone R., Sturiale L., Sofia V., et al. Clinical phenotype correlates to glycoprotein phenotype in a sib pair with CDG‐Ia. American Journal of Medical Genetics Part A . 2008;146A(16):2103–2108. doi: 10.1002/ajmg.a.32446. PubMed DOI

Schiff M., Roda C., Monin M. L., et al. Clinical, laboratory and molecular findings and long-term follow-up data in 96 French patients with PMM2-CDG (phosphomannomutase 2-congenital disorder of glycosylation) and review of the literature. Journal of Medical Genetics . 2017;54(12):843–851. doi: 10.1136/jmedgenet-2017-104903. PubMed DOI

Lindner P., Christensen S. B., Nissen P., Møller J. V., Engedal N. Cell death induced by the ER stressor thapsigargin involves death receptor 5, a non-autophagic function of MAP1LC3B, and distinct contributions from unfolded protein response components. Cell Communication and Signaling: CCS . 2020;18(1):p. 12. doi: 10.1186/s12964-019-0499-z. PubMed DOI PMC

Mukaigasa K., Tsujita T., Nguyen V. T., et al. Nrf2 activation attenuates genetic endoplasmic reticulum stress induced by a mutation in the phosphomannomutase 2 gene in zebrafish. Proceedings of the National Academy of Sciences of the United States of America . 2018;115(11):2758–2763. doi: 10.1073/pnas.1714056115. PubMed DOI PMC

Cline A., Gao N., Flanagan-Steet H., et al. A zebrafish model of PMM2-CDG reveals altered neurogenesis and a substrate-accumulation mechanism for N-linked glycosylation deficiency. Molecular Biology of the Cell . 2012;23(21):4175–4187. doi: 10.1091/mbc.E12-05-0411. PubMed DOI PMC

Westphal V., Kjaergaard S., Schollen E., et al. A frequent mild mutation in ALG6 may exacerbate the clinical severity of patients with congenital disorder of glycosylation Ia (CDG-Ia) caused by phosphomannomutase deficiency. Human Molecular Genetics . 2002;11(5):599–604. doi: 10.1093/hmg/11.5.599. PubMed DOI

Quelhas D., Carneiro J., Lopes-Marques M., et al. Assessing the effects of PMM2 variants on protein stability. Molecular Genetics and Metabolism . 2021;134(4):344–352. doi: 10.1016/j.ymgme.2021.11.002. PubMed DOI

Pascoal C., Ferreira I., Teixeira C., et al. Patient reported outcomes for phosphomannomutase 2 congenital disorder of glycosylation (PMM2-CDG): listening to what matters for the patients and health professionals. Orphanet Journal of Rare Diseases . 2022;17(1):p. 398. doi: 10.1186/s13023-022-02551-y. PubMed DOI PMC

See more in PubMed

ClinicalTrials.gov
NCT03173300

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...