Genotype/Phenotype Relationship: Lessons From 137 Patients With PMM2-CDG
Language English Country United States Media electronic-ecollection
Document type Journal Article, Multicenter Study, Observational Study
PubMed
40225925
PubMed Central
PMC11922042
DOI
10.1155/2024/8813121
Knihovny.cz E-resources
- Keywords
- PMM2, congenital disorders of glycosylation, genetic variations, genotype/phenotype correlations, inherited metabolic disorders, natural history, phosphomannomutase 2-CDG,
- MeSH
- Child MeSH
- Adult MeSH
- Phenotype MeSH
- Phosphotransferases (Phosphomutases) * genetics chemistry MeSH
- Genetic Association Studies * MeSH
- Genotype MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Mutation MeSH
- Child, Preschool MeSH
- Congenital Disorders of Glycosylation * genetics diagnosis MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Observational Study MeSH
- Names of Substances
- Phosphotransferases (Phosphomutases) * MeSH
- phosphomannomutase 2, human MeSH Browser
We report on the largest single dataset of patients with PMM2-CDG enrolled in an ongoing international, multicenter natural history study collecting genetic, clinical, and biological information to evaluate similarities with previous studies, report on novel findings, and, additionally, examine potential genotype/phenotype correlations. A total of 137 participants had complete genotype information, representing 60 unique variants, of which the most common were found to be p.Arg141His in 58.4% (n = 80) of participants, followed by p.Pro113Leu (21.2%, n = 29), and p.Phe119Leu (12.4%, n = 17), consistent with previous studies. Interestingly, six new variants were reported, comprised of five missense variants (p.Pro20Leu, p.Tyr64Ser, p.Phe68Cys, p.Tyr76His, and p.Arg238His) and one frameshift (c.696del p.Ala233Argfs∗100). Patient phenotypes were characterized via the Nijmegen Progression CDG Rating Scale (NPCRS), together with biochemical parameters, the most consistently dysregulated of which were coagulation factors, specifically antithrombin (below normal in 79.5%, 93 of 117), in addition to Factor XI and protein C activity. Patient genotypes were classified based upon the predicted pathogenetic mechanism of disease-associated mutations, of which most were found in the catalysis/activation, folding, or dimerization regions of the PMM2 enzyme. Two different approaches were used to uncover genotype/phenotype relationships. The first characterized genotype only by the predicted pathogenic mechanisms and uncovered associated changes in biochemical parameters, not apparent using only NPCRS, involving catalysis/activation, dimerization, folding, and no protein variants. The second approach characterized genotype by the predicted pathogenic mechanism and/or individual variants when paired with a subset of severe nonfunctioning variants and uncovered correlations with both NPCRS and biochemical parameters, demonstrating that p.Cys241Ser was associated with milder disease, while p.Val231Met, dimerization, and folding variants with more severe disease. Although determining comprehensive genotype/phenotype relationships has previously proven challenging for PMM2-CDG, the larger sample size, plus inclusion of biochemical parameters in the current study, has provided new insights into the interplay of genetics with disease. Trial Registration: NCT03173300.
Center for Integrative Brain Research Seattle Children's Research Institute Seattle Washington USA
Centro de Genética Médica Centro Hospitalar Universitário de Santo António Porto Portugal
Children's Clinic Tartu University Hospital N Lunini Street 6 Tartu Estonia
Department of Clinical Genomics Mayo Clinic Rochester Minnesota USA
Department of Development and Regeneration Faculty of Medicine KU Leuven Leuven Belgium
Department of Internal Medicine Radboud University Medical Centre Nijmegen Netherlands
Department of Laboratory Medicine and Pathology Mayo Clinic Rochester Minnesota USA
Department of Paediatrics Metabolic Disease Center University Hospitals Leuven Leuven Belgium
Departments of Neurology and Pediatric and Adolescent Medicine Mayo Clinic Rochester Minnesota USA
Genetics and Personalized Medicine Clinic Tartu University Hospital L Puusepa Street 2 Tartu Estonia
Glycomine Inc San Francisco California USA
U 703 Centre for Biomedical Research on Rare Diseases Instituto de Salud Carlos 3 Barcelona Spain
See more in PubMed
Ferreira C. R., Rahman S., Keller M., Zschocke J., ICIMD Advisory Group An international classification of inherited metabolic disorders (ICIMD) Journal of Inherited Metabolic Disease . 2021;44(1):164–177. doi: 10.1002/jimd.12348. PubMed DOI PMC
Freeze H. H., Jaeken J., Matthijs G. CDG or not CDG. Journal of Inherited Metabolic Disease . 2022;45(3):383–385. doi: 10.1002/jimd.12498. PubMed DOI PMC
Ondruskova N., Cechova A., Hansikova H., Honzik T., Jaeken J. Congenital disorders of glycosylation: still "hot" in 2020. Biochimica et Biophysica Acta (BBA)-General Subjects . 2021;1865, article 129751(1) doi: 10.1016/j.bbagen.2020.129751. PubMed DOI
Jaeken J., Matthijs G. Congenital disorders of glycosylation. Annual Review of Genomics and Human Genetics . 2001;2(1):129–151. doi: 10.1146/annurev.genom.2.1.129. PubMed DOI
Altassan R., Péanne R., Jaeken J., et al. International clinical guidelines for the management of phosphomannomutase 2-congenital disorders of glycosylation: diagnosis, treatment and follow up. Journal of Inherited Metabolic Disease . 2019;42(1):5–28. doi: 10.1002/jimd.12024. PubMed DOI
Ligezka A. N., Radenkovic S., Saraswat M., et al. Sorbitol is a severity biomarker for PMM2-CDG with therapeutic implications. Annals of Neurology . 2021;90(6):887–900. doi: 10.1002/ana.26245. PubMed DOI PMC
Vals M. A., Morava E., Teeäär K., et al. Three families with mild PMM2-CDG and normal cognitive development. American Journal of Medical Genetics Part A . 2017;173(6):1620–1624. doi: 10.1002/ajmg.a.38235. PubMed DOI PMC
Charlwood J., Clayton P., Johnson A., Keir G., Mian N., Winchester B. A case of the carbohydrate-deficient glycoprotein syndrome type 1 (CDGS type 1) with normal phosphomannomutase activity. Journal of Inherited Metabolic Disease . 1997;20(6):817–827. doi: 10.1023/a:1005380003902. PubMed DOI
Citro V., Cimmaruta C., Monticelli M., et al. The analysis of variants in the general population reveals that PMM2 is extremely tolerant to missense mutations and that diagnosis of PMM2-CDG can benefit from the identification of modifiers. International Journal of Molecular Sciences . 2018;19(8):p. 2218. doi: 10.3390/ijms19082218. PubMed DOI PMC
Grünewald S., Matthijs G., Jaeken J. Congenital disorders of glycosylation: a review. Pediatric Research . 2002;52(5):618–624. doi: 10.1203/00006450-200211000-00003. PubMed DOI
Matthijs G., Schollen E., Pardon E., et al. Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13 in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome) Nature Genetics . 1997;16(1):88–92. doi: 10.1038/ng0597-88. PubMed DOI
Vaes L., Rymen D., Cassiman D., et al. Genotype-phenotype correlations in PMM2-CDG. Genes . 2021;12(11):p. 1658. doi: 10.3390/genes12111658. PubMed DOI PMC
Andreotti G., Cabeza de Vaca I., Poziello A., Monti M. C., Guallar V., Cubellis M. V. Conformational response to ligand binding in phosphomannomutase2: insights into inborn glycosylation disorder. The Journal of Biological Chemistry . 2014;289(50):34900–34910. doi: 10.1074/jbc.M114.586362. PubMed DOI PMC
Silvaggi N. R., Zhang C., Lu Z., Dai J., Dunaway-Mariano D., Allen K. N. The X-ray crystal structures of human alpha-phosphomannomutase 1 reveal the structural basis of congenital disorder of glycosylation type 1a. The Journal of Biological Chemistry . 2006;281(21):14918–14926. doi: 10.1074/jbc.M601505200. PubMed DOI
Martinsson T., Bjursell C., Stibler H., et al. Linkage of a locus for carbohydrate-deficient glycoprotein syndrome type I (CDG1) to chromosome 16p, and linkage disequilibrium to microsatellite marker D16S406. Human Molecular Genetics . 1994;3(11):2037–2042. PubMed
Lam C., Krasnewich D. M. [Updated 2021 May 20]. PMM2-CDG. In: Adam M. P., editor. GeneReviews® . Seattle: University of Washington; 2005. https://www.ncbi.nlm.nih.gov/books/NBK1110/ PubMed
Schollen E., Kjaergaard S., Legius E., Schwartz M., Matthijs G. Lack of Hardy-Weinberg equilibrium for the most prevalent PMM2 mutation in CDG-Ia (congenital disorders of glycosylation type Ia) European Journal of Human Genetics . 2000;8(5):367–371. doi: 10.1038/sj.ejhg.5200470. PubMed DOI
Karczewski K. J., Francioli L. C., Tiao G., et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature . 2020;581(7809):434–443. doi: 10.1038/s41586-020-2308-7. PubMed DOI PMC
Vals M. A., Pajusalu S., Kals M., Mägi R., Õunap K. The prevalence of PMM2-CDG in Estonia based on population carrier frequencies and diagnosed patients. JIMD Reports . 2018;39:13–17. doi: 10.1007/8904_2017_41. PubMed DOI PMC
Vaes L., Tiller G. E., Pérez B., et al. PMM2-CDG caused by uniparental disomy: case report and literature review. JIMD Reports . 2020;54(1):16–21. doi: 10.1002/jmd2.12122. PubMed DOI PMC
Achouitar S., Mohamed M., Gardeitchik T., et al. Nijmegen paediatric CDG rating scale: a novel tool to assess disease progression. Journal of Inherited Metabolic Disease . 2011;34(4):923–927. doi: 10.1007/s10545-011-9325-5. PubMed DOI PMC
Ligezka A. N., Mohamed A., Pascoal C., et al. Patient-reported outcomes and quality of life in PMM2-CDG. Molecular Genetics and Metabolism . 2022;136(2):145–151. doi: 10.1016/j.ymgme.2022.04.002. PubMed DOI
Briso-Montiano A., Del Caño-Ochoa F., Vilas A., et al. Insight on molecular pathogenesis and pharmacochaperoning potential in phosphomannomutase 2 deficiency, provided by novel human phosphomannomutase 2 structures. Journal of Inherited Metabolic Disease . 2022;45(2):318–333. doi: 10.1002/jimd.12461. PubMed DOI
Green G. H., Diggle P. J. On the operational characteristics of the Benjamini and Hochberg false discovery rate procedure. Statistical Applications in Genetics and Molecular Biology . 2007;6:p. 27. doi: 10.2202/1544-6115.1302. PubMed DOI
Serrano N. L., De Diego V., Cuadras D., et al. A quantitative assessment of the evolution of cerebellar syndrome in children with phosphomannomutase-deficiency (PMM2-CDG) Orphanet Journal of Rare Diseases . 2017;12(1):p. 155. doi: 10.1186/s13023-017-0707-0. PubMed DOI PMC
Richards S., Aziz N., Bale S., et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine . 2015;17(5):405–424. doi: 10.1038/gim.2015.30. PubMed DOI PMC
Grünewald S., Schollen E., Van Schaftingen E., Jaeken J., Matthijs G. High residual activity of PMM2 in patients' fibroblasts: possible pitfall in the diagnosis of CDG-Ia (phosphomannomutase deficiency) American Journal of Human Genetics . 2001;68(2):347–354. doi: 10.1086/318199. PubMed DOI PMC
Lipiński P., Bogdańska A., Tylki-Szymańska A. Congenital disorders of glycosylation: prevalence, incidence and mutational spectrum in the Polish population. Molecular Genetics and Metabolism Reports . 2021;27, article 100726 doi: 10.1016/j.ymgmr.2021.100726. PubMed DOI PMC
Pajusalu S., Vals M. A., Mihkla L., Šamarina U., Kahre T., Õunap K. The estimated prevalence of N-linked congenital disorders of glycosylation across various populations based on allele frequencies in general population databases. Frontiers in Genetics . 2021;12, article 719437 doi: 10.3389/fgene.2021.719437. PubMed DOI PMC
Yıldız Y., Arslan M., Çelik G., et al. Genotypes and estimated prevalence of phosphomannomutase 2 deficiency in Turkey differ significantly from those in Europe. American Journal of Medical Genetics Part A . 2020;182(4):705–712. doi: 10.1002/ajmg.a.61488. PubMed DOI
Vega A. I., Pérez-Cerdá C., Abia D., et al. Expression analysis revealing destabilizing mutations in phosphomannomutase 2 deficiency (PMM2-CDG): expression analysis of PMM2-CDG mutations. Journal of Inherited Metabolic Disease . 2011;34(4):929–939. doi: 10.1007/s10545-011-9328-2. PubMed DOI
Barone R., Carrozzi M., Parini R., et al. A nationwide survey of PMM2-CDG in Italy: high frequency of a mild neurological variant associated with the L32R mutation. Journal of Neurology . 2015;262(1):154–164. doi: 10.1007/s00415-014-7549-7. PubMed DOI
Westphal V., Peterson S., Patterson M., et al. Functional significance of PMM2 mutations in mildly affected patients with congenital disorders of glycosylation Ia. Genetics in Medicine . 2001;3(6):393–398. doi: 10.1097/00125817-200111000-00003. PubMed DOI
Casado M., O'Callaghan M. M., Montero R., et al. Mild clinical and biochemical phenotype in two patients with PMM2-CDG (congenital disorder of glycosylation Ia) The Cerebellum . 2012;11(2):557–563. doi: 10.1007/s12311-011-0313-y. PubMed DOI
Barone R., Sturiale L., Sofia V., et al. Clinical phenotype correlates to glycoprotein phenotype in a sib pair with CDG‐Ia. American Journal of Medical Genetics Part A . 2008;146A(16):2103–2108. doi: 10.1002/ajmg.a.32446. PubMed DOI
Schiff M., Roda C., Monin M. L., et al. Clinical, laboratory and molecular findings and long-term follow-up data in 96 French patients with PMM2-CDG (phosphomannomutase 2-congenital disorder of glycosylation) and review of the literature. Journal of Medical Genetics . 2017;54(12):843–851. doi: 10.1136/jmedgenet-2017-104903. PubMed DOI
Lindner P., Christensen S. B., Nissen P., Møller J. V., Engedal N. Cell death induced by the ER stressor thapsigargin involves death receptor 5, a non-autophagic function of MAP1LC3B, and distinct contributions from unfolded protein response components. Cell Communication and Signaling: CCS . 2020;18(1):p. 12. doi: 10.1186/s12964-019-0499-z. PubMed DOI PMC
Mukaigasa K., Tsujita T., Nguyen V. T., et al. Nrf2 activation attenuates genetic endoplasmic reticulum stress induced by a mutation in the phosphomannomutase 2 gene in zebrafish. Proceedings of the National Academy of Sciences of the United States of America . 2018;115(11):2758–2763. doi: 10.1073/pnas.1714056115. PubMed DOI PMC
Cline A., Gao N., Flanagan-Steet H., et al. A zebrafish model of PMM2-CDG reveals altered neurogenesis and a substrate-accumulation mechanism for N-linked glycosylation deficiency. Molecular Biology of the Cell . 2012;23(21):4175–4187. doi: 10.1091/mbc.E12-05-0411. PubMed DOI PMC
Westphal V., Kjaergaard S., Schollen E., et al. A frequent mild mutation in ALG6 may exacerbate the clinical severity of patients with congenital disorder of glycosylation Ia (CDG-Ia) caused by phosphomannomutase deficiency. Human Molecular Genetics . 2002;11(5):599–604. doi: 10.1093/hmg/11.5.599. PubMed DOI
Quelhas D., Carneiro J., Lopes-Marques M., et al. Assessing the effects of PMM2 variants on protein stability. Molecular Genetics and Metabolism . 2021;134(4):344–352. doi: 10.1016/j.ymgme.2021.11.002. PubMed DOI
Pascoal C., Ferreira I., Teixeira C., et al. Patient reported outcomes for phosphomannomutase 2 congenital disorder of glycosylation (PMM2-CDG): listening to what matters for the patients and health professionals. Orphanet Journal of Rare Diseases . 2022;17(1):p. 398. doi: 10.1186/s13023-022-02551-y. PubMed DOI PMC
ClinicalTrials.gov
NCT03173300