Progression independent of relapse activity and relapse-associated worsening in seronegative NMOSD: an international cohort study
Language English Country Germany Media electronic
Document type Journal Article, Multicenter Study
PubMed
40227344
PubMed Central
PMC11996963
DOI
10.1007/s00415-025-13064-6
PII: 10.1007/s00415-025-13064-6
Knihovny.cz E-resources
- Keywords
- Disability, EDSS, NMOSD, Progression independent of relapses, Relapse-associated worsening, Seronegative,
- MeSH
- Aquaporin 4 immunology MeSH
- Autoantibodies blood MeSH
- Adult MeSH
- Cohort Studies MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Follow-Up Studies MeSH
- Neuromyelitis Optica * physiopathology epidemiology blood immunology MeSH
- Disability Evaluation MeSH
- Disease Progression * MeSH
- Recurrence MeSH
- Registries MeSH
- Retrospective Studies MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Names of Substances
- Aquaporin 4 MeSH
- AQP4 protein, human MeSH Browser
- Autoantibodies MeSH
BACKGROUND: Previous studies have indicated that progression independent of relapse activity (PIRA) is uncommon in patients with aquaporin- 4 antibody-positive (AQP4-IgG) neuromyelitis optica spectrum disorder (NMOSD). However, the patterns of disability accumulation in seronegative NMOSD are unknown. This study aimed to evaluate the prevalence of PIRA and relapse-associated worsening (RAW) in seronegative NMOSD. METHODS: We conducted a retrospective, multicentre cohort study of seronegative NMOSD patients from the MSBase registry. Inclusion criteria required at least three recorded expanded disability status scale (EDSS) scores: baseline, progression, and 6 months confirmed disability progression (CDP). For those with 6-month CDP, the presence or absence of relapse between baseline and progression determined the classification as RAW or PIRA, respectively. Descriptive statistics were employed to present the data. RESULTS: This study included 93 patients, with a median follow-up duration of 5.0 years (Q1 2.8, Q3 8.4). The cohort predominantly consisted of female patients (77.4%), with a median age of onset of 33.9 years (Q1 26.1, Q3 41.2). PIRA was observed in 1 case (1.1%), whilst RAW was documented in 7 cases (7.5%). CONCLUSION: This international cohort study confirms that CDP is uncommon in seronegative NMOSD. Given more than three quarters of CDP occur due to RAW, therapeutic strategies should focus primarily on preventing relapses.
CORe Department of Medicine University of Melbourne Melbourne VIC Australia
Department of Biotechnological and Applied Clinical Sciences University of L'Aquila L'Aquila Italy
Department of Medical and Surgical Sciences and Advanced Technologies GF Ingrassia Catania Italy
Department of Neurology Alfred Health Melbourne VIC Australia
Department of Neurology Antwerp University Hospital Drie Eikenstraat 655 2650 Edegem Belgium
Department of Neurology Faculty of Medicine University of Debrecen Debrecen Hungary
Department of Neurology Haydarpasa Numune Training and Research Hospital Istanbul Turkey
Department of Neurology Medical Faculty Karadeniz Technical University Trabzon Turkey
Department of Neurology Neuroimmunology Centre The Royal Melbourne Hospital Parkville VIC Australia
Department of Neurology Royal Brisbane Hospital Brisbane Australia
Department of Neurology Universitary Hospital Ghent Ghent Belgium
Department of Neurology Walton Centre NHS Foundation Trust Liverpool UK
Department of Neuroscience Central Clinical School Monash University Melbourne VIC Australia
Department of Neuroscience Hospital Germans Trias 1 Pujol Badalona Spain
Faculty of Medicine Isfahan University of Medical Sciences Isfahan Iran
Hunter Medical Research Institute University of Newcastle NeurologyNewcastle Australia
Hunter New England Health John Hunter Hospital New Lambton Heights NSW Australia
Izmir University of Economics Medical Point Hospital Izmir Turkey
Multiple Sclerosis Research Association Izmir Turkey
Neurology Dr Etemadifar MS Institute Isfahan Iran
See more in PubMed
Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T et al (2015) International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85(2):177–189 PubMed PMC
Siriratnam P, Huda S, Butzkueven H, Van der Walt A, Jokubaitis V, Monif M (2023) A comprehensive review of the advances in neuromyelitis optica spectrum disorder. Autoimmun Rev. 10.1016/j.autrev.2023.103465 PubMed
Wu Y, Geraldes R, Jurynczyk M, Palace J (2023) Double-negative neuromyelitis optica spectrum disorder. Mult Scler 29(11–12):1353–1362 PubMed PMC
Siriratnam P, Sanfilippo P, van der Walt A, Sharmin S, Foong YC, Yeh WZ et al (2024) Predictors of relapse risk and treatment response in AQP4-IgG positive and seronegative NMOSD: A multicentre study. J Neurol Neurosurg Psychiatr. 10.1136/jnnp-2024-334090 PubMed
Siriratnam P, Huda S, Van Der Walt A, Sanfilippo PG, Sharmin S, Foong YC et al (2024) Prevalence of progression independent of relapse activity and relapse-associated worsening in patients With AQP4-IgG-positive NMOSD. Neurology 103(12):e209940 PubMed
Butzkueven H, Chapman J, Cristiano E, Grand’Maison F, Hoffmann M, Izquierdo G et al (2006) MSBase: an international, online registry and platform for collaborative outcomes research in multiple sclerosis. Mult Scler 12(6):769–774 PubMed
Lorscheider J, Buzzard K, Jokubaitis V, Spelman T, Havrdova E, Horakova D et al (2016) Defining secondary progressive multiple sclerosis. Brain 139(Pt 9):2395–2405 PubMed
Muller J, Cagol A, Lorscheider J, Tsagkas C, Benkert P, Yaldizli O et al (2023) Harmonizing definitions for progression independent of relapse activity in multiple sclerosis: a systematic Review. JAMA Neurol 80(11):1232–1245 PubMed
Avasarala J (2017) Redefining acute relapses in multiple sclerosis: implications for phase 3 clinical trials and treatment algorithms. Innov Clin Neurosci 14(3–4):38–40 PubMed PMC
Lublin FD, Haring DA, Ganjgahi H, Ocampo A, Hatami F, Cuklina J et al (2022) How patients with multiple sclerosis acquire disability. Brain 145(9):3147–3161 PubMed PMC
Lassmann H, van Horssen J, Mahad D (2012) Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 8(11):647–656 PubMed
Criste G, Trapp B, Dutta R (2014) Axonal loss in multiple sclerosis: causes and mechanisms. Handb Clin Neurol 122:101–113 PubMed
Kawachi I, Lassmann H (2017) Neurodegeneration in multiple sclerosis and neuromyelitis optica. J Neurol Neurosurg Psychiat 88(2):137–145 PubMed
Hyun JW, Kim Y, Kim KH, Kim SH, Olesen MN, Asgari N et al (2022) CSF GFAP levels in double seronegative neuromyelitis optica spectrum disorder: no evidence of astrocyte damage. J Neuroinflammation 19(1):86 PubMed PMC
Oertel FC, Havla J, Roca-Fernandez A, Lizak N, Zimmermann H, Motamedi S et al (2018) Retinal ganglion cell loss in neuromyelitis optica: a longitudinal study. J Neurol Neurosurg Psychiat 89(12):1259–1265 PubMed
Akaishi T, Kaneko K, Himori N, Takeshita T, Takahashi T, Nakazawa T et al (2017) Subclinical retinal atrophy in the unaffected fellow eyes of multiple sclerosis and neuromyelitis optica. J Neuroimmunol 313:10–15 PubMed
Jeong IH, Kim HJ, Kim NH, Jeong KS, Park CY (2016) Subclinical primary retinal pathology in neuromyelitis optica spectrum disorder. J Neurol 263(7):1343–1348 PubMed
Ringelstein M, Harmel J, Zimmermann H, Brandt AU, Paul F, Haarmann A et al (2020) Longitudinal optic neuritis-unrelated visual evoked potential changes in NMO spectrum disorders. Neurology 94(4):e407–e418 PubMed
Oertel FC, Specovius S, Zimmermann HG, Chien C, Motamedi S, Bereuter C et al (2021) Retinal optical coherence tomography in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm. 10.1212/NXI.0000000000001068 PubMed PMC
Murphy OC, Calabresi PA, Saidha S (2023) Trans-synaptic degeneration as a mechanism of neurodegeneration in multiple sclerosis. Neural Regen Res 18(12):2682–2684 PubMed PMC
Lu A, Zimmermann HG, Specovius S, Motamedi S, Chien C, Bereuter C et al (2022) Astrocytic outer retinal layer thinning is not a feature in AQP4-IgG seropositive neuromyelitis optica spectrum disorders. J Neurol Neurosurg Psychiat 93(2):188–195 PubMed PMC
Villoslada P, Sanchez-Dalmau B (2022) Aquaporin-4-neuromyelitis optica spectrum disorder is not a progressive disease. J Neurol Neurosurg Psychiat 93(2):116–117 PubMed
Ventura RE, Kister I, Chung S, Babb JS, Shepherd TM (2016) Cervical spinal cord atrophy in NMOSD without a history of myelitis or MRI-visible lesions. Neurol Neuroimmunol Neuroinflamm 3(3):e224 PubMed PMC
Parissis D, Smyrni N, Ioannidis P, Grigoriadis N (2021) Primary progression in NMOSD. Does it really exist? Mult Scler Relat Disord. 10.1016/j.msard.2020.102712 PubMed
Oertel FC, Schliesseit J, Brandt AU, Paul F (2019) Cognitive impairment in neuromyelitis optica spectrum disorders: a review of clinical and neuroradiological features. Front Neurol 10:608 PubMed PMC
Czarnecka D, Oset M, Karlinska I, Stasiolek M (2020) Cognitive impairment in NMOSD-More questions than answers. Brain Behav 10(11):e01842 PubMed PMC
Moghadasi AN, Mirmosayyeb O, Mohammadi A, Sahraian MA, Ghajarzadeh M (2021) The prevalence of cognitive impairment in patients with neuromyelitis optica spectrum disorders (NMOSD): A systematic review and meta-analysis. Mult Scler Relat Disord 49:102757 PubMed
Saji E, Arakawa M, Yanagawa K, Toyoshima Y, Yokoseki A, Okamoto K et al (2013) Cognitive impairment and cortical degeneration in neuromyelitis optica. Ann Neurol 73(1):65–76 PubMed
Mader S, Brimberg L (2019) Aquaporin-4 water channel in the brain and its implication for health and disease. Cells. 10.3390/cells8020090 PubMed PMC
Saab G, Munoz DG, Rotstein DL (2022) Chronic cognitive impairment in AQP4+ NMOSD with improvement in cognition on eculizumab: a report of two cases. Front Neurol 13:863151 PubMed PMC
Kim H, Lee EJ, Kim S, Choi LK, Kim HJ, Kim HW et al (2022) Longitudinal follow-up of serum biomarkers in patients with neuromyelitis optica spectrum disorder. Mult Scler 28(4):512–521 PubMed
Hyun JW, Kim Y, Kim SY, Lee MY, Kim SH, Kim HJ (2021) Investigating the presence of interattack astrocyte damage in neuromyelitis optica spectrum disorder: longitudinal analysis of serum glial fibrillary acidic protein. Neurol Neuroimmunol Neuroinflamm. 10.1212/NXI.0000000000000965 PubMed PMC
Duchow A, Bellmann-Strobl J, Friede T, Aktas O, Angstwurm K, Ayzenberg I et al (2024) Time to disability milestones and annualized relapse rates in NMOSD and MOGAD. Ann Neurol 95(4):720–732 PubMed
Masha N, Kimbrough DJ, Eckstein CP, Hudak NM, Skeen MB, Hartsell FL et al (2023) Neuromyelitis optica: Clinical course and potential prognostic indicators. Mult Scler Relat Disord 69:104414 PubMed
Brayo P, Hartsell FL 3rd, Skeen M, Morgenlander J, Eckstein C, Shah S (2019) The clinical presentation and treatment of MOG antibody disease at a single academic center: A case series. J Neuroimmunol 337:577078 PubMed
Banwell B, Bennett JL, Marignier R, Kim HJ, Brilot F, Flanagan EP et al (2023) Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: International MOGAD Panel proposed criteria. Lancet Neurol 22(3):268–282 PubMed