A cross-sectional study of the role of epithelial cell injury in kidney transplant outcomes
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, pozorovací studie
PubMed
40232852
PubMed Central
PMC12128995
DOI
10.1172/jci.insight.188658
PII: 188658
Knihovny.cz E-zdroje
- Klíčová slova
- Molecular diagnosis, Nephrology, Organ transplantation, Transplantation,
- MeSH
- akutní poškození ledvin * patologie genetika MeSH
- analýza hlavních komponent MeSH
- biopsie MeSH
- dospělí MeSH
- epitelo-mezenchymální tranzice genetika MeSH
- epitelové buňky * patologie metabolismus MeSH
- ledviny patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- průřezové studie MeSH
- rejekce štěpu * patologie genetika MeSH
- senioři MeSH
- transkriptom MeSH
- transplantace ledvin * škodlivé účinky MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
BACKGROUND: Expression of acute kidney injury-associated (AKI-associated) transcripts in kidney transplants may reflect recent injury and accumulation of epithelial cells in "failed repair" states. We hypothesized that the phenomenon of failed repair could be associated with deterioration and failure in kidney transplants. METHODS: We defined injury-induced transcriptome states in 4,502 kidney transplant biopsies injury-induced gene sets and classifiers previously developed in transplants. RESULTS: In principal component analysis (PCA), PC1 correlated with both acute and chronic kidney injury and related inflammation and PC2 with time posttransplant. Positive PC3 was a dimension that correlated with epithelial remodeling pathways and anticorrelated with inflammation. Both PC1 and PC3 correlated with reduced survival, with PC1 effects strongly increasing over time whereas PC3 effects were independent of time. In this model, we studied the expression of 12 "new" gene sets annotated in single-nucleus RNA-sequencing studies of epithelial cells with failed repair in native kidneys. The new gene sets reflecting epithelial-mesenchymal transition correlated with injury PC1 and PC3, lower estimated glomerular filtration rate, higher donor age, and future failure as strongly as any gene sets previously derived in transplants and were independent of nephron segment of origin and graft rejection. CONCLUSION: These results suggest 2 dimensions in the kidney transplant response to injury: PC1, AKI-induced changes, failed repair, and inflammation; and PC3, a response involving epithelial remodeling without inflammation. Increasing kidney age amplifies PC1 and PC3. TRIAL REGISTRATION: INTERCOMEX (ClinicalTrials.gov NCT01299168); Trifecta-Kidney (ClinicalTrials.gov NCT04239703). FUNDING: Genome Canada; Natera, Inc.; and Thermo Fisher Scientific.
Alberta Transplant Applied Genomics Centre and
Charité Universitätsmedizin Berlin Berlin Germany
Cleveland Clinic Foundation Cleveland Ohio USA
Hannover Medical School Hannover Germany
Henry Ford Transplant Institute Detroit Michigan USA
Institute for Experimental and Clinical Medicine Prague Czech Republic
Intermountain Transplant Services Murray Utah USA
Johns Hopkins University School of Medicine Baltimore Maryland USA
Manchester Royal Infirmary Manchester United Kingdom
Medical University of Białystok Białystok Poland
Medical University of Gdańsk Gdańsk Poland
Medical University of Vienna Vienna Austria
Medical University of Wrocław Wrocław Poland
Montefiore Medical Center Bronx New York USA
PinnacleHealth Transplant Associates UPMC Harrisburg Pennsylvania USA
Pomeranian Medical University Szczecin Poland
Silesian Medical University Katowice Poland
St Paul's Hospital Vancouver British Columbia Canada
Tampa General Hospital Tampa Florida USA
The Royal Melbourne Hospital Parkville Victoria Australia
University Hospital Cleveland Medical Center Cleveland Ohio USA
University Hospital Merkur Zagreb Croatia
University Hospital No 1 Bydgoszcz Poland
University Hospital Zurich Zurich Switzerland
University of Alabama at Birmingham Birmingham Alabama USA
University of Alberta Edmonton Alberta Canada
University of Ljubljana Ljubljana Slovenia
University of Maryland Baltimore Maryland USA
University of Minnesota Minneapolis Minnesota USA
University of Washington Seattle Washington USA
University of Wisconsin Madison Wisconsin USA
Vilnius University Hospital Santaros Klinikos Vilnius Lithuania
Virginia Commonwealth University Richmond Virginia USA
Warsaw Medical University Warsaw Poland
Zobrazit více v PubMed
Einecke G, et al. Factors associated with kidney graft survival in pure antibody-mediated rejection at the time of indication biopsy: importance of parenchymal injury but not disease activity. Am J Transplant. 2021;21(4):1391–1401. doi: 10.1111/ajt.16161. PubMed DOI
Halloran PF, et al. Archetypal analysis of injury in kidney transplant biopsies identifies two classes of early AKI. Front Med (Lausanne) 2022;9:817324. doi: 10.3389/fmed.2022.817324. PubMed DOI PMC
Famulski KS, et al. Transcriptome analysis reveals heterogeneity in the injury response of kidney transplants. Am J Transplant. 2007;7(11):2483–2495. doi: 10.1111/j.1600-6143.2007.01980.x. PubMed DOI
Famulski KS, et al. Molecular phenotypes of acute kidney injury in kidney transplants. J Am Soc Nephrol. 2012;23(5):948–958. doi: 10.1681/ASN.2011090887. PubMed DOI PMC
Einecke G, et al. Expression of B cell and immunoglobulin transcripts is a feature of inflammation in late allografts. Am J Transplant. 2008;8(7):1434–1443. doi: 10.1111/j.1600-6143.2008.02232.x. PubMed DOI
Mengel M, et al. Molecular correlates of scarring in kidney transplants: the emergence of mast cell transcripts. Am J Transplant. 2009;9(1):169–178. doi: 10.1111/j.1600-6143.2008.02462.x. PubMed DOI
Halloran PF, et al. Discovering novel injury features in kidney transplant biopsies associated with TCMR and donor aging. Am J Transplant. 2021;21(5):1725–1739. doi: 10.1111/ajt.16374. PubMed DOI
Einecke G, et al. A molecular classifier for predicting future graft loss in late kidney transplant biopsies. J Clin Invest. 2010;120(6):1862–1872. doi: 10.1172/JCI41789. PubMed DOI PMC
Halloran PF, et al. Molecular phenotype of kidney transplant indication biopsies with inflammation in scarred areas. Am J Transplant. 2019;19(5):1356–1370. doi: 10.1111/ajt.15178. PubMed DOI
Famulski KS, et al. Kidney transplants with progressing chronic diseases express high levels of acute kidney injury transcripts. Am J Transplant. 2013;13(3):634–644. doi: 10.1111/ajt.12080. PubMed DOI
Madill-Thomsen KS, et al. Relating molecular T cell-mediated rejection activity in kidney transplant biopsies to time and to histologic tubulitis and atrophy-fibrosis. Transplantation. 2023;107(5):1102–1114. doi: 10.1097/TP.0000000000004396. PubMed DOI PMC
Halloran PF, et al. The molecular phenotype of kidney transplants: insights from the MMDx project. Transplantation. 2024;108(1):45–71. doi: 10.1097/TP.0000000000004624. PubMed DOI PMC
Kirita Y, et al. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury. Proc Natl Acad Sci U S A. 2020;117(27):15874–15883. doi: 10.1073/pnas.2005477117. PubMed DOI PMC
Hinze C, et al. Single-cell transcriptomics reveals common epithelial response patterns in human acute kidney injury. Genome Med. 2022;14(1):103. doi: 10.1186/s13073-022-01108-9. PubMed DOI PMC
Wen Y, et al. Analysis of the human kidney transcriptome and plasma proteome identifies markers of proximal tubule maladaptation to injury. Sci Transl Med. 2023;15(726):eade7287. doi: 10.1126/scitranslmed.ade7287. PubMed DOI PMC
Hinze C, et al. Epithelial cell states associated with kidney and allograft injury. Nat Rev Nephrol. 2024;20(7):447–459. doi: 10.1038/s41581-024-00834-0. PubMed DOI PMC
Muto Y, et al. Epigenetic reprogramming driving successful and failed repair in acute kidney injury. Sci Adv. 2024;10(32):eado2849. doi: 10.1126/sciadv.ado2849. PubMed DOI PMC
Ledru N, et al. Predicting proximal tubule failed repair drivers through regularized regression analysis of single cell multiomic sequencing. Nat Commun. 2024;15(1):1291. doi: 10.1038/s41467-024-45706-0. PubMed DOI PMC
Yang L, et al. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med. 2010;16(5):535–543. doi: 10.1038/nm.2144. PubMed DOI PMC
Cippa PE, et al. Transcriptional trajectories of human kidney injury progression. JCI Insight. 2018;3(22):e123151. doi: 10.1172/jci.insight.123151. PubMed DOI PMC
Shavlakadze T, et al. Age-related gene expression signature in rats demonstrate early, late, and linear transcriptional changes from multiple tissues. Cell Rep. 2019;28(12):3263–3273. doi: 10.1016/j.celrep.2019.08.043. PubMed DOI
Reeve J, et al. Assessing rejection-related disease in kidney transplant biopsies based on archetypal analysis of molecular phenotypes. JCI Insight. 2017;2(12):e94197. doi: 10.1172/jci.insight.94197. PubMed DOI PMC
Halloran PF, et al. Subthreshold rejection activity in many kidney transplants currently classified as having no rejection. Am J Transplant. 2025;25(1):72–87. doi: 10.1016/j.ajt.2024.07.034. PubMed DOI
Venner JM, et al. Relationships among injury, fibrosis, and time in human kidney transplants. JCI Insight. 2016;1(1):e85323. doi: 10.1172/jci.insight.85323. PubMed DOI PMC
Madill-Thomsen KS, et al. Donor-specific antibody is associated with increased expression of rejection transcripts in renal transplant biopsies classified as no rejection. J Am Soc Nephrol. 2021;32(11):2743–2758. doi: 10.1681/ASN.2021040433. PubMed DOI PMC
Rosales IA, et al. Banff human organ transplant transcripts correlate with renal allograft pathology and outcome: importance of capillaritis and subpathologic rejection. J Am Soc Nephrol. 2022;33(12):2306–2319. doi: 10.1681/ASN.2022040444. PubMed DOI PMC
Mylonas KJ, et al. Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment promoting repair. Sci Transl Med. 2021;13(594):eabb0203. doi: 10.1126/scitranslmed.abb0203. PubMed DOI
Dai CL, et al. CXCL6: a potential therapeutic target for inflammation and cancer. Clin Exp Med. 2023;23(8):4413–4427. doi: 10.1007/s10238-023-01152-8. PubMed DOI
Katz-Greenberg G, et al. Sex and gender differences in kidney transplantation. Semin Nephrol. 2022;42(2):219–229. doi: 10.1016/j.semnephrol.2022.04.011. PubMed DOI PMC
Halloran PF, et al. Potential impact of microarray diagnosis of T cell-mediated rejection in kidney transplants: the INTERCOM study. Am J Transplant. 2013;13(9):2352–2363. doi: 10.1111/ajt.12387. PubMed DOI
Halloran PF, et al. Microarray diagnosis of antibody-mediated rejection in kidney transplant biopsies: an international prospective study (INTERCOM) Am J Transplant. 2013;13(11):2865–2874. doi: 10.1111/ajt.12465. PubMed DOI
Reeve J, et al. Generating automated kidney transplant biopsy reports combining molecular measurements with ensembles of machine learning classifiers. Am J Transplant. 2019;19(10):2719–2731. doi: 10.1111/ajt.15351. PubMed DOI
Halloran PF, et al. Real time central assessment of kidney transplant indication biopsies by microarrays: the INTERCOMEX study. Am J Transplant. 2017;17(11):2851–2862. doi: 10.1111/ajt.14329. PubMed DOI
Halloran PF, et al. The trifecta study: comparing plasma levels of donor-derived cell-free DNA with the molecular phenotype of kidney transplant biopsies. J Am Soc Nephrol. 2022;33(2):387–400. doi: 10.1681/ASN.2021091191. PubMed DOI PMC
Halloran PF, et al. Combining donor-derived cell-free DNA fraction and quantity to detect kidney transplant rejection using molecular diagnoses and histology as confirmation. Transplantation. 2022;106(12):2435–2442. doi: 10.1097/TP.0000000000004212. PubMed DOI PMC
Halloran PF, et al. Antibody-mediated rejection without detectable donor-specific antibody releases donor-derived cell-free DNA: results from the Trifecta study. Transplantation. 2023;107(3):709–719. doi: 10.1097/TP.0000000000004324. PubMed DOI PMC
Madill-Thomsen KS, et al. The effect of cortex/medulla proportions on molecular diagnoses in kidney transplant biopsies: rejection and injury can be assessed in medulla. Am J Transplant. 2017;17(8):2117–2128. doi: 10.1111/ajt.14233. PubMed DOI PMC
Konopka T. umap: Uniform Manifold Approximation and Projection. https://cran.r-project.org/web/packages/umap/index.html Accessed April 10, 2025.
Ishwaran H, et al. Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC). https://cran.r-project.org/web/packages/randomForestSRC/randomForestSRC.pdf Accessed April 10, 2025.
Therneau T. survival: Survival Analysis. https://CRAN.R-project.org/package=survival Accessed April 10, 2025.
Kassambara A, et al. survminer: Drawing Survival Curves using ‘ggplot2’. https://cran.r-project.org/web/packages/survminer/survminer.pdf Accessed April 10, 2025.
R: A language and environment for statistical computing. R Foundation for Statistical Computing; 2019. https://www.R-project.org/ Accessed April 10, 2025.
Harrell FE Jr. rms: Regression Modeling Strategies. R package version 6.8-2. https://CRAN.R-project.org/package=rms Accessed April 10, 2025.
Hidalgo LG, et al. The transcriptome of human cytotoxic T cells: similarities and disparities among allostimulated CD4(+) CTL, CD8(+) CTL and NK cells. Am J Transplant. 2008;8(3):627–636. doi: 10.1111/j.1600-6143.2007.02128.x. PubMed DOI
Karlsson M, et al. A single-cell type transcriptomics map of human tissues. Sci Adv. 2021;7(31):eabh2169. doi: 10.1126/sciadv.abh2169. PubMed DOI PMC
ClinicalTrials.gov
NCT04239703, NCT01299168