Exploring glymphatic system alterations in iRBD and Parkinson's disease using automated DTI-ALPS analysis
Status PubMed-not-MEDLINE Language English Country United States Media electronic
Document type Journal Article
Grant support
LX22NPO5107
National Institute for Neurological Research (Programme EXCELES) - Funded by the European Union - Next Generation EU
LX22NPO5107
National Institute for Neurological Research (Programme EXCELES) - Funded by the European Union - Next Generation EU
LX22NPO5107
National Institute for Neurological Research (Programme EXCELES) - Funded by the European Union - Next Generation EU
LX22NPO5107
National Institute for Neurological Research (Programme EXCELES) - Funded by the European Union - Next Generation EU
LX22NPO5107
National Institute for Neurological Research (Programme EXCELES) - Funded by the European Union - Next Generation EU
LX22NPO5107
National Institute for Neurological Research (Programme EXCELES) - Funded by the European Union - Next Generation EU
LX22NPO5107
National Institute for Neurological Research (Programme EXCELES) - Funded by the European Union - Next Generation EU
LX22NPO5107
National Institute for Neurological Research (Programme EXCELES) - Funded by the European Union - Next Generation EU
LX22NPO5107
National Institute for Neurological Research (Programme EXCELES) - Funded by the European Union - Next Generation EU
LX22NPO5107
National Institute for Neurological Research (Programme EXCELES) - Funded by the European Union - Next Generation EU
LX22NPO5107
National Institute for Neurological Research (Programme EXCELES) - Funded by the European Union - Next Generation EU
CZ-DRO-VFN641
Všeobecná Fakultní Nemocnice v Praze
CZ-DRO-VFN641
Všeobecná Fakultní Nemocnice v Praze
CZ-DRO-VFN641
Všeobecná Fakultní Nemocnice v Praze
CZ-DRO-VFN641
Všeobecná Fakultní Nemocnice v Praze
CZ-DRO-VFN641
Všeobecná Fakultní Nemocnice v Praze
CZ-DRO-VFN641
Všeobecná Fakultní Nemocnice v Praze
CZ-DRO-VFN641
Všeobecná Fakultní Nemocnice v Praze
CZ-DRO-VFN641
Všeobecná Fakultní Nemocnice v Praze
CZ-DRO-VFN641
Všeobecná Fakultní Nemocnice v Praze
NU21-04-00535
Agentura Pro Zdravotnický Výzkum České Republiky
NU21-04-00535
Agentura Pro Zdravotnický Výzkum České Republiky
NU21-04-00535
Agentura Pro Zdravotnický Výzkum České Republiky
NU21-04-00535
Agentura Pro Zdravotnický Výzkum České Republiky
NU21-04-00535
Agentura Pro Zdravotnický Výzkum České Republiky
NU21-04-00535
Agentura Pro Zdravotnický Výzkum České Republiky
NU21-04-00535
Agentura Pro Zdravotnický Výzkum České Republiky
NU21-04-00535
Agentura Pro Zdravotnický Výzkum České Republiky
NU21-04-00535
Agentura Pro Zdravotnický Výzkum České Republiky
NU21-04-00535
Agentura Pro Zdravotnický Výzkum České Republiky
CZ-DRO-NHH00023884
Na Homolce Hospital
CZ-DRO-NHH00023884
Na Homolce Hospital
PubMed
40234457
PubMed Central
PMC12000549
DOI
10.1038/s41531-025-00921-4
PII: 10.1038/s41531-025-00921-4
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Diffusion tensor image analysis along the perivascular space (DTI-ALPS) is a potential non-invasive marker of glymphatic function that typically relies on manual region of interest (ROI) placement. This study compared ALPS indices in treatment-naïve, de novo diagnosed patients with Parkinson's disease (PD), patients with isolated REM behavior disorder (iRBD), and healthy controls using both manual and automatic approaches to the ROI selection used in ALPS-index calculation. ALPS indices were analyzed bilaterally and correlated with clinical severity (MDS-UPDRS) and nigrostriatal denervation (DAT-SPECT). ANCOVA revealed significant inter-group differences using both manual (p = 0.018) and automatic (p = 0.002) ROI selection methods. The automatic ROI selection approach showed significantly lower ALPS indices in PD compared to controls (p = 0.001) and iRBD (p = 0.009). ALPS indices correlated with symptom severity and nigrostriatal denervation. These findings underscore the reliability of the automatic ROI placement approach for ALPS index calculation and may indicate early glymphatic alterations in Parkinson's disease.
Czech Technical University Prague Faculty of Biomedical Engineering Kladno Czech Republic
Department of Radiodiagnostics Na Homolce Hospital Prague Czech Republic
See more in PubMed
Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med. 4, 147ra111 (2012). PubMed PMC
Bohr, T. et al. The glymphatic system: current understanding and modeling. iScience25, 104987 (2022). PubMed PMC
Kamagata, K et al. Association of MRI indices of glymphatic system with amyloid deposition and cognition in mild cognitive impairment and Alzheimer disease. Neurology99, E2648–E2660 (2022). PubMed PMC
Yokota, H et al. Diagnostic performance of glymphatic system evaluation using diffusion tensor imaging in idiopathic normal pressure hydrocephalus and mimickers. Curr. Gerontol. Geriatr. Res.2019, 5675014 (2019). PubMed PMC
Shen, T, et al. Diffusion along perivascular spaces as marker for impairment of glymphatic system in Parkinson’s disease. npj Park. Dis.8, 1–10 (2022). PubMed PMC
Taoka, T. et al. Diffusion tensor image analysis along the perivascular space (DTI-ALPS): revisiting the meaning and significance of the method. Magn. Reson. Med. Sci. (2024). 10.2463/MRMS.REV.2023-0175. PubMed PMC
Ding, X. et al. Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson’s disease. Nat. Med.27, 411–418 (2021). PubMed
Lee, DA, Lee, HJ & Park, KM Glymphatic dysfunction in isolated REM sleep behavior disorder. Acta Neurol. Scand.145, 464–470 (2022). PubMed
Bae, Y. J. et al. Altered brain glymphatic flow at diffusion-tensor MRI in rapid eye movement sleep behavior disorder. Radiology307, e221848 (2023). PubMed
Mattioli, P et al. Derivation and validation of a phenoconversion-related pattern in idiopathic rapid eye movement behavior disorder. Mov. Disord.38, 57–67 (2023). PubMed PMC
Zhang, H et al. Risk factors for phenoconversion in rapid eye movement sleep behavior disorder. Ann. Neurol.91, 404–416 (2022). PubMed
Postuma, RB et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain142, 744–759 (2019). PubMed PMC
Hu, MT REM sleep behavior disorder (RBD). Neurobiol. Dis.143, 104996 (2020). PubMed
Iranzo, A. et al. Neurodegenerative disorder risk in idiopathic REM sleep behavior disorder: study in 174 patients. PLoS ONE9, e0089741 (2014). PubMed PMC
Naganawa, S & Taoka, T The glymphatic system: a review of the challenges in visualizing its structure and function with MR imaging. Magn. Reson. Med. Sci.21, 182–194 (2022). PubMed PMC
Taoka, T et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases. Jpn. J. Radiol.35, 172–178 (2017). PubMed
Zhang, W. et al. Glymphatic clearance function in patients with cerebral small vessel disease. Neuroimage238, 118257 (2021). PubMed
Si, X, et al. Neuroimaging evidence of glymphatic system dysfunction in possible REM sleep behavior disorder and Parkinson’s disease. npj Park. Dis.8, 1–9 (2022). PubMed PMC
Ringstad, G Glymphatic imaging: a critical look at the DTI-ALPS index. Neuroradiology66, 157–160 (2024). PubMed
Jiang, D et al. Regional glymphatic abnormality in behavioral variant frontotemporal dementia. Ann. Neurol.94, 442–456 (2023). PubMed PMC
Wood, K. H. et al. Diffusion tensor imaging-along the perivascular-space index is associated with disease progression in Parkinson’s disease. Mov. Disord. 10.1002/MDS.29908 (2024). PubMed PMC
Joza, S et al. Is REM sleep behavior disorder changing? Secular changes versus referral patterns. Mov. Disord. Clin. Pract.10, 1519–1524 (2023). PubMed PMC
Bae, YJ et al. Glymphatic function assessment in Parkinson’s disease using diffusion tensor image analysis along the perivascular space. Park. Relat. Disord.114, 105767 (2023). PubMed
Yao, J et al. Early detection of dopaminergic dysfunction and glymphatic system impairment in Parkinson’s disease. Park. Relat. Disord.127, 107089 (2024). PubMed
Chen, HL et al. Associations among cognitive functions, plasma DNA, and diffusion tensor image along the perivascular space (DTI-ALPS) in patients with Parkinson’s disease. Oxid. Med. Cell. Longev.2021, 4034509 (2021). PubMed PMC
Qin, Y et al. Neuroimaging uncovers distinct relationships of glymphatic dysfunction and motor symptoms in Parkinson’s disease. J. Neurol.270, 2649–2658 (2023). PubMed
Barber, T. R. et al. Prodromal Parkinsonism and neurodegenerative risk stratification in REM sleep behavior disorder. Sleep40, zsx071 (2017). PubMed PMC
Iranzo, A, Santamaria, J & Tolosa, E Idiopathic rapid eye movement sleep behaviour disorder: diagnosis, management, and the need for neuroprotective interventions. Lancet Neurol.15, 405–419 (2016). PubMed
Ba, F, Obaid, M, Wieler, M, Camicioli, R & Martin, WRW Parkinson disease: the relationship between non-motor symptoms and motor phenotype. Can. J. Neurol. Sci.43, 261–267 (2016). PubMed
Horsager, J & Borghammer, P Brain-first vs. body-first Parkinson’s disease: an update on recent evidence. Park. Relat. Disord.122, 106101 (2024). PubMed
Johansson, M. E., van Lier, N. M., Kessels, R. P. C., Bloem, B. R. & Helmich, R. C. Two-year clinical progression in focal and diffuse subtypes of Parkinson’s disease. NPJ Park. Dis.9, 29 (2023). PubMed PMC
Simuni, T et al. Longitudinal change of clinical and biological measures in early Parkinson’s disease: Parkinson’s progression markers initiative cohort. Mov. Disord.33, 771 (2018). PubMed PMC
Nedergaard, M. & Goldman, S. A. Glymphatic failure as a final common pathway to dementia. Science370, 50–56 (2020). PubMed PMC
Saito, Y, et al. Glymphatic system impairment in sleep disruption: diffusion tensor image analysis along the perivascular space (DTI-ALPS). Jpn. J. Radiol.41, 1335–1343 (2023). PubMed
Butler, T. et al. Glymphatic clearance estimated using diffusion tensor imaging along perivascular spaces is reduced after traumatic brain injury and correlates with plasma neurofilament light, a biomarker of injury severity. Brain Commun.5, fcad134 (2023). PubMed PMC
Xie, L et al. Sleep drives metabolite clearance from the adult brain. Science (80-.)342, 373–377 (2013). PubMed PMC
Nepozitek, J., Dusek, P. & Sonka, K. Glymphatic system, sleep, and Parkinson’s disease: interconnections, research opportunities, and potential for disease modification. Sleep48, zsae251 (2025). PubMed PMC
Menza, M, Dobkin, RDF, Marin, H & Bienfait, K Sleep disturbances in Parkinson’s disease. Mov. Disord.25, S117 (2010). PubMed PMC
Dušek, P et al. Clinical characteristics of newly dia gnosed Parkinson’s disease patients included in the longitudinal BIO-PD study. Ces. Slov. Neurol. Neurochir.83, 633–639 (2020).
Postuma, RB et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord.30, 1591–1601 (2015). PubMed
American Academy of Sleep Medicine. International Classification of Sleep Disorders (American Academy of Sleep Medicine, 2014).
Nasreddine, ZS et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc.53, 695–699 (2005). PubMed
Goetz, CG et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord.23, 2129–2170 (2008). PubMed
Darcourt, J et al. EANM procedure guidelines for brain neurotransmission SPECT using (123)I-labelled dopamine transporter ligands, version 2. Eur. J. Nucl. Med. Mol. Imaging37, 443–450 (2010). PubMed
Dušek, P. et al. Relations of non-motor symptoms and dopamine transporter binding in REM sleep behavior disorder. Sci. Rep. 9, 15463 (2019). PubMed PMC
Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. Neuroimage62, 782–790 (2012). PubMed
Woolrich, M. W. et al. Bayesian analysis of neuroimaging data in FSL. Neuroimage45, S173–S186 (2009). PubMed
Veraart, J et al. Denoising of diffusion MRI using random matrix theory. Neuroimage142, 394–406 (2016). PubMed PMC
Tournier, JD et al. MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage202, 116137 (2019). PubMed
Mölder, F et al. Sustainable data analysis with Snakemake. F1000Research10, 33 (2021). PubMed PMC
Krajča, T, Mareček, S, Sojka, P, Dušek, P & Krupička, R Streamlining neuroimaging—snakemake’s role in developing a striatal segmentation pipeline. IFMBE Proc.110, 610–617 (2024).
Proctor, MR MRI atlas of human white matter. Am. J. Neuroradiol.27, 1384 (2006).
Wakana, S et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage36, 630–644 (2007). PubMed PMC
Hua, K et al. Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage39, 336 (2008). PubMed PMC
Hsiao, WC et al. Association of cognition and brain reserve in aging and glymphatic function using diffusion tensor image-along the perivascular space (DTI-ALPS). Neuroscience524, 11–20 (2023). PubMed
Voevodskaya, O The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer’s disease. Front. Aging Neurosci.6, 93610 (2014). PubMed PMC
Li, X, Xing, Y, Martin-Bastida, A, Piccini, P & Auer, DP Patterns of grey matter loss associated with motor subscores in early Parkinson’s disease. NeuroImage Clin.17, 498–504 (2018). PubMed PMC