Glymphatic system, sleep, and Parkinson's disease: interconnections, research opportunities, and potential for disease modification
Status In-Process Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu úvodníky, komentáře
PubMed
39450429
PubMed Central
PMC11725518
DOI
10.1093/sleep/zsae251
PII: 7840739
Knihovny.cz E-zdroje
Zobrazit více v PubMed
Iliff JJ, Wang M, Liao Y, et al.A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med. 2012;4(147):147ra11. doi: https://doi.org/10.1126/scitranslmed.3003748 PubMed DOI PMC
Simard M, Arcuino G, Takano T, Liu QS, Nedergaard M.. Signaling at the gliovascular interface. J Neurosci. 2003;23(27):9254–9262. doi: https://doi.org/10.1523/JNEUROSCI.23-27-09254.2003 PubMed DOI PMC
Nedergaard M, Goldman SA.. Glymphatic failure as a final common pathway to dementia. Science. 2020;370(6512):50–56. doi: https://doi.org/10.1126/science.abb8739 PubMed DOI PMC
Zhu YC, Dufouil C, Soumare A, Mazoyer B, Chabriat H, Tzourio C.. High degree of dilated Virchow-Robin spaces on MRI is associated with increased risk of dementia. J Alzheimers Dis. 2010;22(2):663–672. doi: https://doi.org/10.3233/JAD-2010-100378 PubMed DOI
Buccellato FR, D’Anca M, Serpente M, Arighi A, Galimberti D.. The role of glymphatic system in Alzheimer’s and Parkinson’s disease pathogenesis. Biomedicines. 2022;10(9):2261. doi: https://doi.org/10.3390/biomedicines10092261 PubMed DOI PMC
Peng W, Achariyar TM, Li B, et al.Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2016;93:215–225. doi: https://doi.org/10.1016/j.nbd.2016.05.015 PubMed DOI PMC
Ding XB, Wang XX, Xia DH, et al.Impaired meningeal lymphatic drainage in patients with idiopathic Parkinson’s disease. Nat Med. 2021;27(3):411–418. doi: https://doi.org/10.1038/s41591-020-01198-1 PubMed DOI
Irwin DJ, Lee VM, Trojanowski JQ.. Parkinson’s disease dementia: convergence of alpha-synuclein, tau and amyloid-beta pathologies. Nat Rev Neurosci. 2013;14(9):626–636. doi: https://doi.org/10.1038/nrn3549 PubMed DOI PMC
Aarsland D, Batzu L, Halliday GM, et al.Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers. 2021;7(1):47. doi: https://doi.org/10.1038/s41572-021-00280-3 PubMed DOI
Xie LL, Kang HY, Xu QW, et al.Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–377. doi: https://doi.org/10.1126/science.1241224 PubMed DOI PMC
Hablitz LM, Vinitsky HS, Sun Q, et al.Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv. 2019;5(2):eaav5447. doi: https://doi.org/10.1126/sciadv.aav5447 PubMed DOI PMC
Scott-Massey A, Boag MK, Magnier A, Bispo D, Khoo TK, Pountney DL.. Glymphatic system dysfunction and sleep disturbance may contribute to the pathogenesis and progression of Parkinson’s disease. Int J Mol Sci. 2022;23(21):12928. doi: https://doi.org/10.3390/ijms232112928 PubMed DOI PMC
Meinhold L, Gennari A, Baumann-Vogel H, et al.T2 MRI visible perivascular spaces in Parkinson’s disease: clinical significance and association with polysomnography measured sleep. Sleep. 2025;48(1):1–12.doi: https://doi.org/10.1093/sleep/zsae233 PubMed DOI PMC
Bojarskaite L, Vallet A, Bjornstad DM, et al.Sleep cycle-dependent vascular dynamics in male mice and the predicted effects on perivascular cerebrospinal fluid flow and solute transport. Nat Commun. 2023;14(1):953. doi: https://doi.org/10.1038/s41467-023-36643-5 PubMed DOI PMC
Morawska MM, Moreira CG, Ginde VR, et al.Slow-wave sleep affects synucleinopathy and regulates proteostatic processes in mouse models of Parkinson’s disease. Sci Transl Med. 2021;13(623):eabe7099. doi: https://doi.org/10.1126/scitranslmed.abe7099 PubMed DOI
Banerjee G, Kim HJ, Fox Z, et al.MRI-visible perivascular space location is associated with Alzheimer’s disease independently of amyloid burden. Brain. 2017;140(4):1107–1116. doi: https://doi.org/10.1093/brain/awx003 PubMed DOI
Park YW, Shin NY, Chung SJ, et al.Magnetic resonance imaging-visible perivascular spaces in basal Ganglia predict cognitive decline in Parkinson’s disease. Mov Disord. 2019;34(11):1672–1679. doi: https://doi.org/10.1002/mds.27798 PubMed DOI
Ramirez J, Berberian SA, ONDRI Investigators, et al.Small and large magnetic resonance imaging-visible perivascular spaces in the basal ganglia of Parkinson’s disease patients. Mov Disord. 2022;37(6):1304–1309. doi: https://doi.org/10.1002/mds.29010 PubMed DOI
Shen T, Yue Y, Zhao S, et al.The role of brain perivascular space burden in early-stage Parkinson’s disease. NPJ Parkinson's Dis. 2021;7(1):12. doi: https://doi.org/10.1038/s41531-021-00155-0 PubMed DOI PMC
Qin Y, Li X, Qiao Y, et al.DTI-ALPS: an MR biomarker for motor dysfunction in patients with subacute ischemic stroke. Front Neurosci. 2023;17:1132393. doi: https://doi.org/10.3389/fnins.2023.1132393 PubMed DOI PMC
Vittorini MG, Sahin A, School of Advanced Studies of the European Headache Federation (EHF-SAS), et al.The glymphatic system in migraine and other headaches. J Headache Pain. 2024;25(1):34. doi: https://doi.org/10.1186/s10194-024-01741-2 PubMed DOI PMC
Plog BA, Dashnaw ML, Hitomi E, et al.Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J Neurosci. 2015;35(2):518–526. doi: https://doi.org/10.1523/JNEUROSCI.3742-14.2015 PubMed DOI PMC
Reeves BC, Karimy JK, Kundishora AJ, et al.Glymphatic system impairment in Alzheimer’s disease and idiopathic normal pressure hydrocephalus. Trends Mol Med. 2020;26(3):285–295. doi: https://doi.org/10.1016/j.molmed.2019.11.008 PubMed DOI PMC
Carotenuto A, Cacciaguerra L, Pagani E, Preziosa P, Filippi M, Rocca MA.. Glymphatic system impairment in multiple sclerosis: relation with brain damage and disability. Brain. 2022;145(8):2785–2795. doi: https://doi.org/10.1093/brain/awab454 PubMed DOI
Shi C, Guo G, Wang W, et al.Impaired glymphatic clearance in multiple system atrophy: a diffusion spectrum imaging study. Parkinsonism Relat Disord. 2024;123:106950. doi: https://doi.org/10.1016/j.parkreldis.2024.106950 PubMed DOI
Videnovic A. Management of sleep disorders in Parkinson’s disease and multiple system atrophy. Mov Disord. 2017;32(5):659–668. doi: https://doi.org/10.1002/mds.26918 PubMed DOI PMC
Bhidayasiri R. Old problems, new solutions: harnessing technology and innovation in Parkinson’s disease-evidence and experiences from Thailand. J Neural Transm (Vienna). 2024;131(6):721–738. doi: https://doi.org/10.1007/s00702-023-02727-1 PubMed DOI
Ahn JH, Kim M, Park S, et al.Prolonged-release melatonin in Parkinson’s disease patients with a poor sleep quality: a randomized trial. Parkinsonism Relat Disord. 2020;75:50–54. doi: https://doi.org/10.1016/j.parkreldis.2020.03.029 PubMed DOI
Delgado-Lara DL, Gonzalez-Enriquez GV, Torres-Mendoza BM, et al.Effect of melatonin administration on the PER1 and BMAL1 clock genes in patients with Parkinson’s disease. Biomed Pharmacother. 2020;129:110485. doi: https://doi.org/10.1016/j.biopha.2020.110485 PubMed DOI
Baumann-Vogel H, Imbach LL, Surucu O, et al.The impact of subthalamic deep brain stimulation on sleep-wake behavior: a prospective electrophysiological study in 50 Parkinson patients. Sleep. 2017;40(5). doi: https://doi.org/10.1093/sleep/zsx033 PubMed DOI
Choi JH, Kim HJ, Lee JY, et al.Long-term effects of bilateral subthalamic nucleus stimulation on sleep in patients with Parkinson’s disease. PLoS One. 2019;14(8):e0221219. doi: https://doi.org/10.1371/journal.pone.0221219 PubMed DOI PMC
Liu Y, Zhang L, Chen W, et al.Subthalamic nucleus deep brain stimulation improves sleep in Parkinson’s disease patients: a retrospective study and a meta-analysis. Sleep Med. 2020;74:301–306. doi: https://doi.org/10.1016/j.sleep.2020.07.042 PubMed DOI
Lan YL, Chen JJ, Hu G, Xu J, Xiao M, Li S.. Aquaporin 4 in astrocytes is a target for therapy in Alzheimer’s disease. Curr Pharm Des. 2017;23(33):4948–4957. doi: https://doi.org/10.2174/1381612823666170714144844 PubMed DOI
Rodríguez-Giraldo M, González-Reyes RE, Ramírez-Guerrero S, Bonilla-Trilleras CE, Guardo-Maya S, Nava-Mesa MO.. Astrocytes as a therapeutic target in Alzheimer’s disease-comprehensive review and recent developments. Int J Mol Sci. 2022;23(21):13630. doi: https://doi.org/10.3390/ijms232113630 PubMed DOI PMC