Effect of Tyrosine-Containing Self-Assembling β-Sheet Peptides on Macrophage Polarization and Inflammatory Response

. 2025 May 14 ; 17 (19) : 27740-27758. [epub] 20250415

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40235215

Self-assembling peptides (SAPs) are fully defined nanobiomaterials offering unprecedented opportunities to control nanostructure and chemical attributes to investigate and manipulate cellular signals. To investigate the influence of chemical and morphological characteristics on inflammatory signaling in native immunity, we designed five β-sheet SAPs: EFEFKFEFK (EF8), YEFEFKFEFK (YEF8), EFEFKFEFKY (EF8Y), YEFEFKFEFKY (YEF8Y), and EYEFKFEFK (EYF8) (F: phenylalanine; E: glutamic acid; K: lysine, Y: tyrosine). The position of tyrosine in the peptide sequence dictated the self-assembly into nanostructures, with all SAPs self-assembling into thin constituent nanofibers with d ≈ 3.8 ± 0.4 nm, and sequences YEF8 and EF8 showing a propensity for associative bundling. These distinct SAPs induced contrasting inflammatory responses of monocytic model THP-1 cells-derived macrophages (MΦs). Presence of soluble EF8 nanofibers (at 2 mM) induced an anti-inflammatory response and polarization toward an M2 state, whereas YEF8 (at 2 mM) displayed a tendency for inducing a pro-inflammatory response and polarization toward an M1 state. EF8Y, YEF8Y, and EYF8 SAPs did not induce an inflammatory response in our models. These results were validated using peripheral blood mononuclear cells (PBMCs)-derived MΦs from human donors, confirming the critical role of EF8 and YEF8 SAPs as possible orchestrators of the repair of tissues or inducers of pro-inflammatory state, respectively. The same MΦs polarization responses from THP-1-derived MΦs cultured on 20 mM hydrogels were obtained. These findings will facilitate the utilization of this family of SAPs as immunomodulatory nanobiomaterials potentially changing the course of inflammation during the progression of various diseases.

Zobrazit více v PubMed

Mao J.; Chen L.; Cai Z.; Qian S.; Liu Z.; Zhao B.; Zhang Y.; Sun X.; Cui W. Advanced Biomaterials for Regulating Polarization of Macrophages in Wound Healing. Adv. Funct. Mater. 2022, 32 (12), 211100310.1002/adfm.202111003. DOI

Bucher C. H.; Schlundt C.; Wulsten D.; Sass F. A.; Wendler S.; Ellinghaus A.; Thiele T.; Seemann R.; Willie B. M.; Volk H.-D.; et al. Experience in the Adaptive Immunity Impacts Bone Homeostasis, Remodeling, and Healing. Front. Immunol. 2019, 10, 79710.3389/fimmu.2019.00797. PubMed DOI PMC

Zhang B.; Su Y.; Zhou J.; Zheng Y.; Zhu D. Toward a Better Regeneration through Implant-Mediated Immunomodulation: Harnessing the Immune Responses. Adv. Sci. 2021, 8 (16), 210044610.1002/advs.202100446. PubMed DOI PMC

Kigerl K. A.; Gensel J. C.; Ankeny D. P.; Alexander J. K.; Donnelly D. J.; Popovich P. G. Identification of Two Distinct Macrophage Subsets with Divergent Effects Causing either Neurotoxicity or Regeneration in the Injured Mouse Spinal Cord. J. Neurosci. 2009, 29 (43), 13435–13444. 10.1523/JNEUROSCI.3257-09.2009. PubMed DOI PMC

Fang P.; Li X.; Dai J.; Cole L.; Camacho J. A.; Zhang Y.; Ji Y.; Wang J.; Yang X. F.; Wang H. Immune cell subset differentiation and tissue inflammation. J. Hematol. Oncol. 2018, 11 (1), 9710.1186/s13045-018-0637-x. PubMed DOI PMC

Krzyszczyk P.; Schloss R.; Palmer A.; Berthiaume F. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes. Front. Physiol. 2018, 9, 41910.3389/fphys.2018.00419. PubMed DOI PMC

Duque G. A.; Descoteaux A. Macrophage Cytokines: Involvement in Immunity and Infectious Diseases. Front. Immunol. 2014, 5, 49110.3389/fimmu.2014.00491. PubMed DOI PMC

Gordon S. Alternative activation of macrophages. Nat. Rev. Immunol. 2003, 3 (1), 23–35. 10.1038/nri978. PubMed DOI

Lawrence T.; Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 2011, 11 (11), 750–761. 10.1038/nri3088. PubMed DOI

Sapudom J.; Karaman S.; Mohamed W. K. E.; Garcia-Sabate A.; Quartey B. C.; Teo J. C. M. 3D in vitro M2 macrophage model to mimic modulation of tissue repair. npj Regener. Med. 2021, 6 (1), 8310.1038/s41536-021-00193-5. PubMed DOI PMC

Walsh C. M.; Wychowaniec J. K.; Brougham D. F.; Dooley D. Functional hydrogels as therapeutic tools for spinal cord injury: New perspectives on immunopharmacological interventions. Pharmacol. Ther. 2022, 234, 10804310.1016/j.pharmthera.2021.108043. PubMed DOI

García-García A.; Pigeot S.; Martin I. Engineering of immunoinstructive extracellular matrices for enhanced osteoinductivity. Bioact. Mater. 2023, 24, 174–184. 10.1016/j.bioactmat.2022.12.017. PubMed DOI PMC

Halperin-Sternfeld M.; Pokhojaev A.; Ghosh M.; Rachmiel D.; Kannan R.; Grinberg I.; Asher M.; Aviv M.; Ma P. X.; Binderman I.; et al. Immunomodulatory fibrous hyaluronic acid-Fmoc-diphenylalanine-based hydrogel induces bone regeneration. J. Clin. Periodontol. 2023, 50 (2), 200–219. 10.1111/jcpe.13725. PubMed DOI PMC

Nakkala J. R.; Yao Y.; Zhai Z.; Duan Y.; Zhang D.; Mao Z.; Lu L.; Gao C. Dimethyl Itaconate-Loaded Nanofibers Rewrite Macrophage Polarization, Reduce Inflammation, and Enhance Repair of Myocardic Infarction. Small 2021, 17 (17), e200699210.1002/smll.202006992. PubMed DOI

Taskin M. B.; Tylek T.; Blum C.; Bohm C.; Wiesbeck C.; Groll J. Inducing Immunomodulatory Effects on Human Macrophages by Multifunctional NCO-sP(EO-stat-PO)/Gelatin Hydrogel Nanofibers. ACS Biomater Sci. Eng. 2021, 7 (7), 3166–3178. 10.1021/acsbiomaterials.1c00232. PubMed DOI

Kumar V. A.; Taylor N. L.; Shi S.; Wickremasinghe N. C.; D’Souza R. N.; Hartgerink J. D. Self-assembling multidomain peptides tailor biological responses through biphasic release. Biomaterials 2015, 52, 71–78. 10.1016/j.biomaterials.2015.01.079. PubMed DOI PMC

Whitesides G. M.; Grzybowski B. Self-assembly at all scales. Science 2002, 295 (5564), 2418–2421. 10.1126/science.1070821. PubMed DOI

Edwards-Gayle C. J. C.; Wychowaniec J. K.. Characterization of Peptide-Based Nanomaterials. In Peptide Bionanomaterials; Elsawy M. A., Ed.; Springer International Publishing, 2023; pp 255–308.

Ligorio C.; Mata A. Synthetic extracellular matrices with function-encoding peptides. Nat. Rev. Bioeng 2023, 1 (7), 518–536. 10.1038/s44222-023-00055-3. PubMed DOI PMC

Pappas C. G.; Shafi R.; Sasselli I. R.; Siccardi H.; Wang T.; Narang V.; Abzalimov R.; Wijerathne N.; Ulijn R. V. Dynamic peptide libraries for the discovery of supramolecular nanomaterials. Nat. Nanotechnol. 2016, 11 (11), 960–967. 10.1038/nnano.2016.169. PubMed DOI

Sheehan F.; Sementa D.; Jain A.; Kumar M.; Tayarani-Najjaran M.; Kroiss D.; Ulijn R. V. Peptide-Based Supramolecular Systems Chemistry. Chem. Rev. 2021, 121, 13869–13914. 10.1021/acs.chemrev.1c00089. PubMed DOI

Garcia A. M.; Melchionna M.; Bellotto O.; Kralj S.; Semeraro S.; Parisi E.; Iglesias D.; D’Andrea P.; De Zorzi R.; Vargiu A. V.; Marchesan S. Nanoscale Assembly of Functional Peptides with Divergent Programming Elements. ACS Nano 2021, 15 (2), 3015–3025. 10.1021/acsnano.0c09386. PubMed DOI PMC

Soliman M. A. N.; Khedr A.; Sahota T.; Armitage R.; Allan R.; Laird K.; Allcock N.; Ghuloum F. I.; Amer M. H.; Alazragi R.; et al. Unraveling the Atomistic Mechanism of Electrostatic Lateral Association of Peptide β-Sheet Structures and Its Role in Nanofiber Growth and Hydrogelation. Small 2025, 21, 240821310.1002/smll.202408213. PubMed DOI PMC

Wychowaniec J. K.; Patel R.; Leach J.; Mathomes R.; Chhabria V.; Patil-Sen Y.; Hidalgo-Bastida A.; Forbes R. T.; Hayes J. M.; Elsawy M. A. Aromatic Stacking Facilitated Self-Assembly of Ultrashort Ionic Complementary Peptide Sequence: beta-Sheet Nanofibers with Remarkable Gelation and Interfacial Properties. Biomacromolecules 2020, 21 (7), 2670–2680. 10.1021/acs.biomac.0c00366. PubMed DOI

Geckil H.; Xu F.; Zhang X. H.; Moon S.; Demirci U. Engineering hydrogels as extracellular matrix mimics. Nanomedicine 2010, 5 (3), 469–484. 10.2217/nnm.10.12. PubMed DOI PMC

Nguyen A. K.; Molley T. G.; Kardia E.; Ganda S.; Chakraborty S.; Wong S. L.; Ruan J.; Yee B. E.; Mata J.; Vijayan A.; et al. Hierarchical assembly of tryptophan zipper peptides into stress-relaxing bioactive hydrogels. Nat. Commun. 2023, 14 (1), 660410.1038/s41467-023-41907-1. PubMed DOI PMC

Treacy N. J.; Clerkin S.; Davis J. L.; Kennedy C.; Miller A. F.; Saiani A.; Wychowaniec J. K.; Brougham D. F.; Crean J. Growth and differentiation of human induced pluripotent stem cell (hiPSC)-derived kidney organoids using fully synthetic peptide hydrogels. Bioact. Mater. 2023, 21, 142–156. 10.1016/j.bioactmat.2022.08.003. PubMed DOI PMC

Zhang S.; Altman M. Peptide self-assembly in functional polymer science and engineering. React. Funct. Polym. 1999, 41 (1), 91–102. 10.1016/S1381-5148(99)00031-0. DOI

Elsawy M. A.; Wychowaniec J. K.; Castillo Diaz L. A.; Smith A. M.; Miller A. F.; Saiani A. Controlling Doxorubicin Release from a Peptide Hydrogel through Fine-Tuning of Drug-Peptide Fiber Interactions. Biomacromolecules 2022, 23 (6), 2624–2634. 10.1021/acs.biomac.2c00356. PubMed DOI PMC

Wychowaniec J. K.; Smith A. M.; Ligorio C.; Mykhaylyk O. O.; Miller A. F.; Saiani A. Role of Sheet-Edge Interactions in β-sheet Self-Assembling Peptide Hydrogels. Biomacromolecules 2020, 21, 2285–2297. 10.1021/acs.biomac.0c00229. PubMed DOI PMC

Si Y.; Wen Y.; Kelly S. H.; Chong A. S.; Collier J. H. Intranasal delivery of adjuvant-free peptide nanofibers elicits resident CD8+ T cell responses. J. Controlled Release 2018, 282, 120–130. 10.1016/j.jconrel.2018.04.031. PubMed DOI PMC

Votaw N. L.; Collier L.; Curvino E. J.; Wu Y.; Fries C. N.; Ojeda M. T.; Collier J. H. Randomized peptide assemblies for enhancing immune responses to nanomaterials. Biomaterials 2021, 273, 12082510.1016/j.biomaterials.2021.120825. PubMed DOI PMC

Mora-Solano C.; Wen Y.; Han H.; Chen J.; Chong A. S.; Miller M. L.; Pompano R. R.; Collier J. H. Active immunotherapy for TNF-mediated inflammation using self-assembled peptide nanofibers. Biomaterials 2017, 149, 1–11. 10.1016/j.biomaterials.2017.09.031. PubMed DOI PMC

Rudra J. S.; Sun T.; Bird K. C.; Daniels M. D.; Gasiorowski J. Z.; Chong A. S.; Collier J. H. Modulating Adaptive Immune Responses to Peptide Self-Assemblies. ACS Nano 2012, 6 (2), 1557–1564. 10.1021/nn204530r. PubMed DOI PMC

Wen Y.; Waltman A.; Han H.; Collier J. H. Switching the Immunogenicity of Peptide Assemblies Using Surface Properties. ACS Nano 2016, 10 (10), 9274–9286. 10.1021/acsnano.6b03409. PubMed DOI PMC

Lee J.; Ju M.; Cho O. H.; Kim Y.; Nam K. T. Tyrosine-Rich Peptides as a Platform for Assembly and Material Synthesis. Adv. Sci. 2019, 6 (4), 180125510.1002/advs.201801255. PubMed DOI PMC

Ding Y.; Li Y.; Qin M.; Cao Y.; Wang W. Photo-Cross-Linking Approach to Engineering Small Tyrosine-Containing Peptide Hydrogels with Enhanced Mechanical Stability. Langmuir 2013, 29 (43), 13299–13306. 10.1021/la4029639. PubMed DOI

Wychowaniec J. K.; Bektas E. I.; Vernengo A. J.; Muerner M.; Airoldi M.; Tipay P. S.; Sapudom J.; Teo J.; Eglin D.; D’Este M. Effect of molecular weight of tyramine-modified hyaluronan on polarization state of THP-1 and peripheral blood mononuclear cells-derived macrophages. Biomater. Adv. 2025, 169, 21416610.1016/j.bioadv.2024.214166. PubMed DOI

Marinho A.; Nunes C.; Reis S. Hyaluronic Acid: A Key Ingredient in the Therapy of Inflammation. Biomolecules 2021, 11, 151810.3390/biom11101518. PubMed DOI PMC

Schwarz D.; Lipoldová M.; Reinecke H.; Sohrabi Y. Targeting inflammation with collagen. Clin. Transl. Med. 2022, 12 (5), e83110.1002/ctm2.831. PubMed DOI PMC

Wychowaniec J. K.; Moffat J.; Saiani A. Quantitative nanomechanical properties evaluation of a family of beta-sheet peptide fibres using rapid bimodal AFM. J. Mech. Behav. Biomed. Mater. 2021, 124, 10477610.1016/j.jmbbm.2021.104776. PubMed DOI

Nelson D. L.; Lehninger A. L.; Cox M. M.. Lehninger Principles of biochemistry. 2017.

Pace C. N.; Horn G.; Hebert E. J.; Bechert J.; Shaw K.; Urbanikova L.; Scholtz J. M.; Sevcik J. Tyrosine hydrogen bonds make a large contribution to protein stability. J. Mol. Biol. 2001, 312 (2), 393–404. 10.1006/jmbi.2001.4956. PubMed DOI

Caplan M. R.; Moore P. N.; Zhang S. G.; Kamm R. D.; Lauffenburger D. A. Self-assembly of a beta-sheet protein governed by relief of electrostatic repulsion relative to van der Waals attraction. Biomacromolecules 2000, 1 (4), 627–631. 10.1021/bm005586w. PubMed DOI

Xing Z.; Chen Y.; Qiu F. Alternative Causal Link between Peptide Fibrillization and β-Strand Conformation. ACS Omega 2021, 6 (19), 12904–12912. 10.1021/acsomega.1c01423. PubMed DOI PMC

Aggeli A.; Bell M.; Carrick L. M.; Fishwick C. W. G.; Harding R.; Mawer P. J.; Radford S. E.; Strong A. E.; Boden N. pH as a Trigger of Peptide β-Sheet Self-Assembly and Reversible Switching between Nematic and Isotropic Phases. J. Am. Chem. Soc. 2003, 125 (32), 9619–9628. 10.1021/ja021047i. PubMed DOI

Barth A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta, Bioenerg. 2007, 1767 (9), 1073–1101. 10.1016/j.bbabio.2007.06.004. PubMed DOI

Rodger A.; Chubb J. J.. Circular Dichroism and Linear Dichroism. In Encyclopedia of Analytical Chemistry; Wiley, 2007; pp 1–42.

Sreerama N.; Woody R. W. A Self-Consistent Method for the Analysis of Protein Secondary Structure from Circular Dichroism. Anal. Biochem. 1993, 209 (1), 32–44. 10.1006/abio.1993.1079. PubMed DOI

Sreerama N.; Woody R. W. Estimation of Protein Secondary Structure from Circular Dichroism Spectra: Comparison of CONTIN, SELCON, and CDSSTR Methods with an Expanded Reference Set. Anal. Biochem. 2000, 287 (2), 252–260. 10.1006/abio.2000.4880. PubMed DOI

Chaudhuri O.; Cooper-White J.; Janmey P. A.; Mooney D. J.; Shenoy V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 2020, 584 (7822), 535–546. 10.1038/s41586-020-2612-2. PubMed DOI PMC

Guimarães C. F.; Gasperini L.; Marques A. P.; Reis R. L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 2020, 5 (5), 351–370. 10.1038/s41578-019-0169-1. DOI

Dong S.; Chapman S. L.; Pluen A.; Richardson S. M.; Miller A. F.; Saiani A. Effect of Peptide–Polymer Host–Guest Electrostatic Interactions on Self-Assembling Peptide Hydrogels Structural and Mechanical Properties and Polymer Diffusivity. Biomacromolecules 2024, 25 (6), 3628–3641. 10.1021/acs.biomac.4c00232. PubMed DOI PMC

Schwab A.; Levato R.; D’Este M.; Piluso S.; Eglin D.; Malda J. Printability and Shape Fidelity of Bioinks in 3D Bioprinting. Chem. Rev. 2020, 120 (19), 11028–11055. 10.1021/acs.chemrev.0c00084. PubMed DOI PMC

Singh K.; Wychowaniec J. K.; Edwards-Gayle C. J. C.; Reynaud E. G.; Rodriguez B. J.; Brougham D. F. Structure-dynamics correlations in composite PF127-PEG-based hydrogels; cohesive/hydrophobic interactions determine phase and rheology and identify the role of micelle concentration in controlling 3D extrusion printability. J. Colloid Interface Sci. 2024, 660, 302–313. 10.1016/j.jcis.2023.12.151. PubMed DOI

Chiesa I.; Ligorio C.; Bonatti A. F.; De Acutis A.; Smith A. M.; Saiani A.; Vozzi G.; De Maria C. Modeling the Three-Dimensional Bioprinting Process of beta-Sheet Self-Assembling Peptide Hydrogel Scaffolds. Front. Med. Technol. 2020, 2, 57162610.3389/fmedt.2020.571626. PubMed DOI PMC

Liu T.; Zhang L.; Joo D.; Sun S.-C. NF-κB signaling in inflammation. Signal Transduction Targeted Ther. 2017, 2 (1), 1702310.1038/sigtrans.2017.23. PubMed DOI PMC

Zhi Y.; Lu H.; Duan Y.; Sun W.; Guan G.; Dong Q.; Yang C. Involvement of the nuclear factor-κB signaling pathway in the regulation of CXC chemokine receptor-4 expression in neuroblastoma cells induced by tumor necrosis factor-α. Int. J. Mol. Med. 2015, 35 (2), 349–357. 10.3892/ijmm.2014.2032. PubMed DOI PMC

Sapudom J.; Mohamed W. K. E.; Garcia-Sabate A.; Alatoom A.; Karaman S.; Mahtani N.; Teo J. C. Collagen Fibril Density Modulates Macrophage Activation and Cellular Functions during Tissue Repair. Bioengineering 2020, 7 (2), 3310.3390/bioengineering7020033. PubMed DOI PMC

Sapudom J.; Karaman S.; Mohamed W. K. E.; Garcia-Sabaté A.; Quartey B. C.; Teo J. C. M. 3D in vitro M2 macrophage model to mimic modulation of tissue repair. npj Regener. Med. 2021, 6 (1), 8310.1038/s41536-021-00193-5. PubMed DOI PMC

Sapudom J.; Wu X.; Chkolnikov M.; Ansorge M.; Anderegg U.; Pompe T. Fibroblast fate regulation by time dependent TGF-β1 and IL-10 stimulation in biomimetic 3D matrices. Biomater. Sci. 2017, 5 (9), 1858–1867. 10.1039/C7BM00286F. PubMed DOI

Schruefer R.; Lutze N.; Schymeinsky J.; Walzog B. Human neutrophils promote angiogenesis by a paracrine feedforward mechanism involving endothelial interleukin-8. Am. J. Physiol.: Heart Circ. Physiol. 2005, 288 (3), H1186–H1192. 10.1152/ajpheart.00237.2004. PubMed DOI

Nelson B. H. IL-2, Regulatory T Cells, and Tolerance. J. Immunol. 2004, 172 (7), 3983–3988. 10.4049/jimmunol.172.7.3983. PubMed DOI

Wang D.; Bratlie K. M. Influence of Polymer Chemistry on Cytokine Secretion from Polarized Macrophages. ACS Biomater. Sci. Eng. 2015, 1 (3), 166–174. 10.1021/ab5001063. PubMed DOI

Hedrich C. M.; Bream J. Cell type-specific regulation of IL-10 expression in inflammation and disease. Immunol. Res. 2010, 47, 185–206. 10.1007/s12026-009-8150-5. PubMed DOI PMC

Kozicky L. K.; Menzies S. C.; Zhao Z. Y.; Vira T.; Harnden K.; Safari K.; Del Bel K. L.; Turvey S. E.; Sly L. M. IVIg and LPS Co-stimulation Induces IL-10 Production by Human Monocytes, Which Is Compromised by an FcgammaRIIA Disease-Associated Gene Variant. Front. Immunol. 2018, 9, 267610.3389/fimmu.2018.02676. PubMed DOI PMC

Haddy N.; Sass C.; Maumus S.; Marie B.; Droesch S.; Siest G.; Lambert D.; Visvikis S. Biological variations, genetic polymorphisms and familial resemblance of TNF-α and IL-6 concentrations: STANISLAS cohort. Eur. J. Hum. Genet. 2005, 13 (1), 109–117. 10.1038/sj.ejhg.5201294. PubMed DOI

Hou J.; Yang R.; Vuong I.; Li F.; Kong J.; Mao H. Q. Biomaterials strategies to balance inflammation and tenogenesis for tendon repair. Acta Biomater. 2021, 130, 1–16. 10.1016/j.actbio.2021.05.043. PubMed DOI

Faroni A.; Workman V. L.; Saiani A.; Reid A. J. Self-Assembling Peptide Hydrogel Matrices Improve the Neurotrophic Potential of Human Adipose-Derived Stem Cells. Adv. Healthcare Mater. 2019, 8 (17), e190041010.1002/adhm.201900410. PubMed DOI

Miles A. J.; Ramalli S. G.; Wallace B. A. DichroWeb, a website for calculating protein secondary structure from circular dichroism spectroscopic data. Protein Sci. 2022, 31 (1), 37–46. 10.1002/pro.4153. PubMed DOI PMC

Schrodinger L. L. C.The PyMOL molecular graphics system, 2010.

Case D. A.; Aktulga H. M.; Belfon K.; Ben-Shalom I.; Brozell S. R.; Cerutti D. S.; Cheatham T. E. III; Cruzeiro V. W. D.; Darden T. A.; Duke R. E.. Amber 2021; University of California: San Francisco, 2021.

Tian C.; Kasavajhala K.; Belfon K. A. A.; Raguette L.; Huang H.; Migues A. N.; Bickel J.; Wang Y.; Pincay J.; Wu Q.; Simmerling C. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16 (1), 528–552. 10.1021/acs.jctc.9b00591. PubMed DOI

Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5 (21), 3863–3871. 10.1021/jz501780a. PubMed DOI PMC

Sengupta A.; Li Z.; Song L. F.; Li P.; Merz K. M. Jr. Parameterization of Monovalent Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. J. Chem. Inf. Model. 2021, 61 (2), 869–880. 10.1021/acs.jcim.0c01390. PubMed DOI PMC

Berendsen H. J. C.; Postma J. P. M.; van Gunsteren W. F.; DiNola A.; Haak J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81 (8), 3684–3690. 10.1063/1.448118. DOI

Ryckaert J.-P.; Ciccotti G.; Berendsen H. J. C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23 (3), 327–341. 10.1016/0021-9991(77)90098-5. DOI

Darden T.; York D.; Pedersen L. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98 (12), 10089–10092. 10.1063/1.464397. DOI

Cowieson N. P.; Edwards-Gayle C. J. C.; Inoue K.; Khunti N. S.; Doutch J.; Williams E.; Daniels S.; Preece G.; Krumpa N. A.; Sutter J. P.; et al. Beamline B21: high-throughput small-angle X-ray scattering at Diamond Light Source. J. Synchrotron Radiat. 2020, 27 (Pt 5), 1438–1446. 10.1107/S1600577520009960. PubMed DOI PMC

Edwards-Gayle C. J. C.; Khunti N.; Hamley I. W.; Inoue K.; Cowieson N.; Rambo R. Design of a multipurpose sample cell holder for the Diamond Light Source high-throughput SAXS beamline B21. J. Synchrotron Radiat. 2021, 28 (1), 318–321. 10.1107/S1600577520013831. PubMed DOI PMC

Hinton T. J.; Hudson A.; Pusch K.; Lee A.; Feinberg A. W. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding. ACS Biomater. Sci. Eng. 2016, 2 (10), 1781–1786. 10.1021/acsbiomaterials.6b00170. PubMed DOI PMC

Razzi F.; Fratila-Apachitei L. E.; Fahy N.; Bastiaansen-Jenniskens Y. M.; Apachitei I.; Farrell E.; Zadpoor A. A. Immunomodulation of surface biofunctionalized 3D printed porous titanium implants. Biomed. Mater. 2020, 15 (3), 03501710.1088/1748-605X/ab7763. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...