Optimal control analysis for the transmission of Nipah infection with imperfect vaccination
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40239175
PubMed Central
PMC12002807
DOI
10.1371/journal.pone.0317408
PII: PONE-D-24-31628
Knihovny.cz E-zdroje
- MeSH
- infekce viry z rodu Henipavirus * přenos prevence a kontrola epidemiologie MeSH
- lidé MeSH
- počítačová simulace MeSH
- teoretické modely MeSH
- vakcinace * MeSH
- virus Nipah * imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Bangladéš epidemiologie MeSH
This paper presents an innovative mathematical model for assessing the dynamics and optimal control of Nipah virus (NiV) with imperfect vaccination. The model formulation considers transmissions through contaminated food and human-to-human contacts. It also incorporates the potential virus transmission through contact with a deceased body infected with NiV. Initially, the NiV model is assessed theoretically, identifying three distinct equilibrium states: the NiV-endemic equilibrium state, the NiV-free equilibrium state, and the equilibrium state involving infected flying foxes. Furthermore, the stability results of the model in the case of constant controls are thoroughly analyzed at the NiV-free equilibrium. Some of the parameters of the model are estimated based on the infected cases documented in Bangladesh from 2001 to 2017. We further perform sensitivity analysis to determine the most influential parameters and formulate effective time-dependent controls. Numerical simulations indicate the optimal course of action for eradicating the disease and provide a comparative analysis of controlling the infection under constant and time-varying interventions. The simulation confirms that the implementation of time-varying interventions is effective in minimizing disease incidence.
ChemicalEngineering Department College of Engineering King Khalid University Abha Saudi Arabia
Department of ElectronicInformation Engineering Xi'an Technological University Xi'an China
Department of Mathematics University of Science and Technology Bannu Pakistan
Departmentof Mathematics University of Peshawar Khyber Pakhtunkhwa Pakistan
IT4Innovations VSB Technical University of Ostrava Ostrava Czech Republic
Jadara University Research Center Jadara University Irbid Jordan
Zobrazit více v PubMed
Nipah virus. https://www.who.int/news-room/fact-sheets/detail/nipah-virus
Chua KB, Bellini WJ, Rota PA, Harcourt BH, Tamin A, Lam SK, et al.. Nipah virus: A recently emergent deadly paramyxovirus. Science. 2000;288(5470):1432–5. PubMed
Chanchal DK, Alok S, Sabharwal M, Bijauliya RK, Rashi S. Nipah: Silently rising infection. IJPSR. 2018;9(8):3128–35.
Clayton BA. Nipah virus: transmission of a zoonotic paramyxovirus. Curr Opin Virol. 2017;22:97–104. doi: 10.1016/j.coviro.2016.12.003 PubMed DOI
Luby SP. The pandemic potential of Nipah virus. Antiviral Res 2013;100(1):38–43. doi: 10.1016/j.antiviral.2013.07.011 PubMed DOI
Broder CC, Xu K, Nikolov DB, Zhu Z, Dimitrov DS, Middleton D, et al.. A treatment for and vaccine against the deadly Hendra and Nipah viruses. Antiviral Res 2013;100(1):8–13. doi: 10.1016/j.antiviral.2013.06.012 PubMed DOI PMC
First-in-human vaccine trial for deadly Nipah virus launched. University of Oxford; 2024. https://www.ox.ac.uk/news/2024-01-11-first-human-vaccine-trial-deadly-nipah-virus-launched
Chattu VK, Kumar R, Kumary S, Kajal F, David JK. Nipah virus epidemic in southern India and emphasizing “One Health” approach to ensure global health security. J Family Med Prim Care 2018;7(2):275–83. doi: 10.4103/jfmpc.jfmpc_137_18 PubMed DOI PMC
Sazzad HMS, Hossain MJ, Gurley ES, Ameen KMH, Parveen S, Islam MS, et al.. Nipah virus infection outbreak with nosocomial and corpse-to-human transmission, Bangladesh. Emerg Infect Dis 2013;19(2):210–7. doi: 10.3201/eid1902.120971 PubMed DOI PMC
Halpin K, Hyatt AD, Fogarty R, Middleton D, Bingham J, Epstein JH, et al.. Pteropid bats are confirmed as the reservoir hosts of henipaviruses: A comprehensive experimental study of virus transmission. Am J Trop Med Hyg 2011;85(5):946–51. doi: 10.4269/ajtmh.2011.10-0567 PubMed DOI PMC
Chong H, Hossain M, Tan CT. Differences in epidemiologic and clinical features of nipah virus encephalitis between the malaysian and bangladesh outbreaks. Neurology Asia. 2008:23–6.
Montgomery JM, Hossain MJ, Gurley E, Carroll GDS, Croisier A, Bertherat E, et al.. Risk factors for Nipah virus encephalitis in Bangladesh. Emerg Infect Dis 2008;14(10):1526–32. doi: 10.3201/eid1410.060507 PubMed DOI PMC
Chakraborty A, Sazzad HMS, Hossain MJ, Islam MS, Parveen S, Husain M, et al.. Evolving epidemiology of Nipah virus infection in Bangladesh: Evidence from outbreaks during 2010-2011. Epidemiol Infect 2016;144(2):371–80. doi: 10.1017/S0950268815001314 PubMed DOI PMC
Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, et al.. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 1999;354(9186):1257–9. doi: 10.1016/S0140-6736(99)04299-3 PubMed DOI
Paton NI, Leo YS, Zaki SR, Auchus AP, Lee KE, Ling AE, et al.. Outbreak of Nipah-virus infection among abattoir workers in Singapore. Lancet 1999;354(9186):1253–6. doi: 10.1016/S0140-6736(99)04379-2 PubMed DOI
Gurley ES, Montgomery JM, Hossain MJ, Bell M, Azad AK, Islam MR, et al.. Person-to-person transmission of Nipah virus in a Bangladeshi community. Emerg Infect Dis 2007;13(7):1031–7. doi: 10.3201/eid1307.061128 PubMed DOI PMC
Chadha MS, Comer JA, Lowe L, Rota PA, Rollin PE, Bellini WJ, et al.. Nipah virus-associated encephalitis outbreak, Siliguri, India. Emerg Infect Dis 2006;12(2):235–40. doi: 10.3201/eid1202.051247 PubMed DOI PMC
Abimbade SF, Chuma FM, Sangoniyi SO, Lebelo RS, Okosun KO, Olaniyi S. Global dynamics of a social hierarchy-stratified malaria model: Insight from fractional calculus. Mathematics. 2024:12(10);1593.
Zhu Q, Gao Y, Hu Q, Hu D, Wu X. A study on the factors influencing the intention to receive booster shots of the COVID-19 vaccine in China based on the information frame effect. Front Public Health. 2024;12:1258188. doi: 10.3389/fpubh.2024.1258188 PubMed DOI PMC
Khan MA, Ullah S, Kumar S. A robust study on 2019-nCOV outbreaks through non-singular derivative. Eur Phys J Plus 2021;136(2):168. doi: 10.1140/epjp/s13360-021-01159-8 PubMed DOI PMC
21. Li, X., Zhang, Y., Yao, Y., Chen, M., Wang, L., Wang, M., ... Ding, Y. The association of post-embryo transfer SARS-CoV-2 infection with early pregnancy outcomes in in vitro fertilization: A prospective cohort study. Am J Obstet Gynecol. 2024;230(4):436.e1–e12. PubMed
Peter OJ, Qureshi S, Ojo MM, Viriyapong R, Soomro A. Mathematical dynamics of measles transmission with real data from Pakistan. Modeling Earth Systems and Environment. 2023;9(2):1545–58.
Mondal C, Das P, Bairagi N. Transmission dynamics and optimal control strategies in a multi-pathways delayed HIV infection model with multi-drug therapy. The European Physical Journal Plus. 2024:139(2);124.
Alzubaidi AM, Othman HA, Ullah S, Ahmad N, Alam MM. Analysis of Monkeypox viral infection with human to animal transmission via a fractional and Fractal-fractional operators with power law kernel. Math Biosci Eng 2023;20(4):6666–90. doi: 10.3934/mbe.2023287 PubMed DOI
Din A, Li Y. The extinction and persistence of a stochastic model of drinking alcohol. Results Phy. 2021;28:104649. doi: 10.1016/j.rinp.2021.104649 DOI
Olaniyi S, Abimbade SF, Ajala OA, Chuma FM. Efficiency and economic analysis of intervention strategies for recurrent malaria transmission. Qual Quant. 2024;58(1):627–45.
Wireko FA, Asamoah JKK, Adu IK, Ndogum S. Non-optimal and optimal fractional control analysis of measles using real data. Informatics in Medicine Unlocked; 2024. p. 101548.
Asamoah JKK, Safianu B, Afrifa E, Obeng B, Seidu B, Wireko FA, et al.. Optimal control dynamics of Gonorrhea in a structured population. Heliyon 2023;9(10):e20531. doi: 10.1016/j.heliyon.2023.e20531 PubMed DOI PMC
Asamoah JKK, Sun GQ. Fractional Caputo and sensitivity heat map for a gonorrhea transmission model in a sex structured population. Chaos Solitons Fractals. 2023;175:114026.
Goswami NK, Olaniyi S, Abimbade SF, Chuma FM. A mathematical model for investigating the effect of media awareness programs on the spread of COVID-19 with optimal control. Healthc Anal. 2024;5:100300.
Asamoah JKK. A fractional mathematical model of heartwater transmission dynamics considering nymph and adult amblyomma ticks. Chaos Solitons Fractals. 2023;174:113905.
Ojo MM, Goufo EFD. Mathematical analysis of a Lassa fever model in Nigeria: Optimal control and cost-efficacy. Int J Dynam Control 2022;10(6):1807–28. doi: 10.1007/s40435-022-00951-3 DOI
Ojo MM, Benson TO, Shittu AR, Doungmo Goufo EF. Optimal control and cost-effectiveness analysis for the dynamic modeling of Lassa fever. J Math Comput Sci. 2022;12.
Ojo MM, Goufo EFD. Modeling, analyzing and simulating the dynamics of Lassa fever in Nigeria. J Egypt Math Soc. 2022:30(1);1.
Ojo MM, Gbadamosi B, Benson TO, Adebimpe O, Georgina AL. Modeling the dynamics of Lassa fever in Nigeria. J Egypt Math Soc. 2021;29(1):1–19.
Biswas MHA. Optimal control of Nipah virus (NiV) infections: A Bangladesh scenario. J Pure Appl Math: Adv Appl. 2014;12(1):77–104.
Mondal MK, Hanif M, Biswas MHA. A mathematical analysis for controlling the spread of Nipah virus infection. Int J Simul Model. 2017;37(3):185–97.
Shah NH, Suthar AH, Thakkar FA, Satia MH. SEI model for transmission of Nipah virus. JMCS. 2018;8(6):714–30.
Li S, Ullah S, AlQahtani SA, Asamoah JKK. Examining dynamics of emerging Nipah viral infection with direct and indirect transmission patterns: A simulation-based analysis via fractional and fractal-fractional derivatives. J Math. 2023:2023(1);6643772.
Ullah S, Nawaz R, AlQahtani SA, Li S, Hassan AM. A mathematical study unfolding the transmission and control of deadly Nipah virus infection under optimized preventive measures: New insights using fractional calculus. Results in Physics. 2023;51:106629. doi: 10.1016/j.rinp.2023.106629 DOI
Barua S, Dénes A. Global dynamics of a compartmental model for the spread of Nipah virus. Heliyon 2023;9(9):e19682. doi: 10.1016/j.heliyon.2023.e19682 PubMed DOI PMC
Khan MY, Ullah S, Farooq M, Al Alwan B, Saqib AB. Optimal control analysis for the Nipah infection with constant and time-varying vaccination and treatment under real data application. Sci Rep 2024;14(1):17532. doi: 10.1038/s41598-024-68091-6 PubMed DOI PMC
Bangladesh Population. https://www.worldometers.info/worldpopulation/bangladeshpopulation/
Rahman M, Chakraborty A. Nipah virus outbreaks in Bangladesh: A deadly infectious disease. WHO South East Asia J Public Health 2012;1(2):208–12. doi: 10.4103/2224-3151.206933 PubMed DOI
Mondal MK, Hanif M, Biswas MHA. A mathematical analysis for controlling the spread of Nipah virus infection. Int J Model Simul. 2017;37(3):185–97.
Bangladesh Population. Accessed March 2023. https://www.worldometers.info/world-population/bangladesh-population
Sinha D, Sinha A. Mathematical model of zoonotic Nipah virus in south-east Asia region. ASMI. 2019;2(9):82–9.
Zewdie AD, Gakkhar S. A mathematical model for Nipah virus infection. J Appl Math. 2020:1–10
Zewdie AD, Gakkhar S, Gupta SK. Human-animal Nipah virus transmission: Model analysis and optimal control. Int J Dyn Control. 2022;11(4):1974–94.
van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci. 2002;180:29–48. doi: 10.1016/s0025-5564(02)00108-6 PubMed DOI
Saha P, Ghosh U. Complex dynamics and control analysis of an epidemic model with non-monotone incidence and saturated treatment. Int J Dyn Control 2023;11(1):301–23. doi: 10.1007/s40435-022-00969-7 PubMed DOI PMC
Chitnis N, Hyman JM, Cushing JM. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull Math Biol 2008;70(5):1272–96. doi: 10.1007/s11538-008-9299-0 PubMed DOI
Agusto FB, Leite MCA. Optimal control and cost-effective analysis of the 2017 meningitis outbreak in Nigeria. Infect Dis Model. 2019;4:161–87. doi: 10.1016/j.idm.2019.05.003 PubMed DOI PMC
Ullah S, Khan MA. Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study. Chaos Solitons Fractals. 2020;139:110075. doi: 10.1016/j.chaos.2020.110075 PubMed DOI PMC
Pontryagin LS, Boltyanskii VT, Gamkrelidze RV, Mishcheuko EF, Works IV LPS. The mathematical theory of optimal processes. Class Sov Math. New York: Gordon and Breach Science Publishers; 1986.
Lukes DL. Differential equations: Classical to controlled. Mathematics in Science and Engineering. New York, NY: Academic Press; 1982. p. 162.
Abidemi A, Olaniyi S, Adepoju OA. An explicit note on the existence theorem of optimal control problem. J Phys Conf Ser. 2022;2199:012021.