Novel PD-1-targeted, activity-optimized IL-15 mutein SOT201 acting in cis provides antitumor activity superior to PD1-IL2v
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
40250867
PubMed Central
PMC12007054
DOI
10.1136/jitc-2024-010736
PII: jitc-2024-010736
Knihovny.cz E-zdroje
- Klíčová slova
- Cytokine, Immune Checkpoint Inhibitor, Immunotherapy, T cell, Tumor microenvironment - TME,
- MeSH
- antigeny CD279 * antagonisté a inhibitory MeSH
- CD8-pozitivní T-lymfocyty imunologie MeSH
- inhibitory kontrolních bodů farmakologie MeSH
- interleukin-15 * genetika farmakologie MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD279 * MeSH
- inhibitory kontrolních bodů MeSH
- interleukin-15 * MeSH
- PDCD1 protein, human MeSH Prohlížeč
BACKGROUND: SOT201 and its murine surrogate mSOT201 are novel cis-acting immunocytokines consisting of a humanized/murinized/, Fc-silenced anti-programmed cell death protein 1 (PD-1) monoclonal antibody (mAb) fused to an attenuated human interleukin (IL)-15 and the IL-15Rα sushi+ domain. Murine mPD1-IL2v is a conjugate of a murinized, Fc silenced anti-PD-1 mAb bearing human IL-2 with abolished IL-2Rα binding. These immunocytokines spatiotemporally reinvigorate PD-1+ CD8+ tumor-infiltrating lymphocytes (TILs) via cis-activation and concomitantly activate the innate immunity via IL-2/15Rβγ signaling. METHODS: Human peripheral blood mononuclear cell and cell lines were used to evaluate cis/trans activity of SOT201. Anti-PD-1 mAb responsive (MC38, CT26) and resistant (B16F10, CT26 STK11 KO) mouse tumor models were used to determine the anticancer efficacy, and the underlying immune cell activity was analyzed via single-cell RNA sequencing and flow cytometry. The expansion of tumor antigen-specific CD8+ T cells by mSOT201 or mPD1-IL2v and memory CD8+ T-cell generation in vivo was determined by flow cytometry. RESULTS: SOT201 delivers attenuated IL-15 to PD-1+ T cells via cis-presentation, reinvigorates exhausted human T cells and induces higher interferon-γ production than pembrolizumab in vitro. mSOT201 administered as a single dose exhibits strong antitumor efficacy with several complete responses in all tested mouse tumor models. While mPD1-IL2v activates CD8+ T cells with a 50-fold higher potency than mSOT201 in vitro, mSOT201 more effectively reactivates effector exhausted CD8+ T cells (Tex), which demonstrate higher cytotoxicity, lower exhaustion and lower immune checkpoint transcriptional signatures in comparison to mPD1-IL2v in MC38 tumors in vivo. This can be correlated with a higher rate of complete responses in the MC38 tumor model following mSOT201 treatment when compared with mPD1-IL2v. mSOT201 increased the relative number of tumor antigen-specific CD8+ T cells, and unlike mPD1-IL2v stimulated greater expansion of adoptively transferred ovalbumin-primed CD8+ T cells simultaneously limiting the peripheral CD8+ T-cell sink, leading to the development of memory CD8+ T cells in vivo. CONCLUSIONS: SOT201 represents a promising therapeutic candidate that preferentially targets PD-1+ TILs, delivering balanced cytokine activity for reviving CD8+ Tex cells in tumors. SOT201 is currently being evaluated in the Phase I clinical study VICTORIA-01 (NCT06163391) in patients with advanced metastatic cancer.
Zobrazit více v PubMed
Waldmann TA. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol Res. 2015;3:219–27. doi: 10.1158/2326-6066.CIR-15-0009. PubMed DOI PMC
Arneja A, Johnson H, Gabrovsek L, et al. Qualitatively different T cell phenotypic responses to IL-2 versus IL-15 are unified by identical dependences on receptor signal strength and duration. J Immunol. 2014;192:123–35. doi: 10.4049/jimmunol.1302291. PubMed DOI PMC
Meghnem D, Morisseau S, Frutoso M, et al. Cutting Edge: Differential Fine-Tuning of IL-2- and IL-15-Dependent Functions by Targeting Their Common IL-2/15Rβ/γc Receptor. J Immunol. 2017;198:4563–8. doi: 10.4049/jimmunol.1700046. PubMed DOI
Stonier SW, Schluns KS. Trans-presentation: a novel mechanism regulating IL-15 delivery and responses. Immunol Lett. 2010;127:85–92. doi: 10.1016/j.imlet.2009.09.009. PubMed DOI PMC
Zhou Y, Husman T, Cen X, et al. Interleukin 15 in Cell-Based Cancer Immunotherapy. IJMS. 2022;23:7311. doi: 10.3390/ijms23137311. PubMed DOI PMC
Raeber ME, Sahin D, Karakus U, et al. A systematic review of interleukin-2-based immunotherapies in clinical trials for cancer and autoimmune diseases. EBioMedicine. 2023;90:104539. doi: 10.1016/j.ebiom.2023.104539. PubMed DOI PMC
Overwijk WW, Tagliaferri MA, Zalevsky J. Engineering IL-2 to Give New Life to T Cell Immunotherapy. Annu Rev Med. 2021;72:281–311. doi: 10.1146/annurev-med-073118-011031. PubMed DOI
Holder PG, Lim SA, Huang CS, et al. Engineering interferons and interleukins for cancer immunotherapy. Adv Drug Deliv Rev. 2022;182:114112. doi: 10.1016/j.addr.2022.114112. PubMed DOI
Tzeng A, Kwan BH, Opel CF, et al. Antigen specificity can be irrelevant to immunocytokine efficacy and biodistribution. Proc Natl Acad Sci U S A. 2015;112:3320–5. doi: 10.1073/pnas.1416159112. PubMed DOI PMC
Codarri Deak L, Nicolini V, Hashimoto M, et al. PD-1-cis IL-2R agonism yields better effectors from stem-like CD8+ T cells. Nature New Biol. 2022;610:161–72. doi: 10.1038/s41586-022-05192-0. PubMed DOI PMC
Xu Y, Carrascosa LC, Yeung YA, et al. An Engineered IL15 Cytokine Mutein Fused to an Anti-PD1 Improves Intratumoral T-cell Function and Antitumor Immunity. Cancer Immunol Res. 2021;9:1141–57. doi: 10.1158/2326-6066.CIR-21-0058. PubMed DOI
Tichet M, Wullschleger S, Chryplewicz A, et al. Bispecific PD1-IL2v and anti-PD-L1 break tumor immunity resistance by enhancing stem-like tumor-reactive CD8+ T cells and reprogramming macrophages. Immunity. 2023;56:162–79. doi: 10.1016/j.immuni.2022.12.006. PubMed DOI
Chen J, Shen Z, Jiang X, et al. Preclinical evaluation of IAP0971, a novel immunocytokine that binds specifically to PD1 and fuses IL15/IL15Rα complex. Antib Ther . 2023;6:38–48. doi: 10.1093/abt/tbac031. PubMed DOI PMC
Ren Z, Zhang A, Sun Z, et al. Selective delivery of low-affinity IL-2 to PD-1+ T cells rejuvenates antitumor immunity with reduced toxicity. J Clin Invest. 2022;132:e153604. doi: 10.1172/JCI153604. PubMed DOI PMC
Shen J, Zou Z, Guo J, et al. An engineered concealed IL-15-R elicits tumor-specific CD8+T cell responses through PD-1-cis delivery. J Exp Med. 2022;219:e20220745. doi: 10.1084/jem.20220745. PubMed DOI PMC
Sharma P, Siddiqui BA, Anandhan S, et al. The Next Decade of Immune Checkpoint Therapy. Cancer Discov. 2021;11:838–57. doi: 10.1158/2159-8290.CD-20-1680. PubMed DOI
Bagchi S, Yuan R, Engleman EG. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annu Rev Pathol. 2021;16:223–49. doi: 10.1146/annurev-pathol-042020-042741. PubMed DOI
Philip M, Schietinger A. CD8+ T cell differentiation and dysfunction in cancer. Nat Rev Immunol. 2022;22:209–23. doi: 10.1038/s41577-021-00574-3. PubMed DOI PMC
Guan Q, Han M, Guo Q, et al. Strategies to reinvigorate exhausted CD8+ T cells in tumor microenvironment. Front Immunol. 2023;14:1204363. doi: 10.3389/fimmu.2023.1204363. PubMed DOI PMC
Beltra J-C, Manne S, Abdel-Hakeem MS, et al. Developmental Relationships of Four Exhausted CD8+ T Cell Subsets Reveals Underlying Transcriptional and Epigenetic Landscape Control Mechanisms. Immunity. 2020;52:825–41. doi: 10.1016/j.immuni.2020.04.014. PubMed DOI PMC
Siddiqui I, Schaeuble K, Chennupati V, et al. Intratumoral Tcf1+PD-1+CD8+ T Cells with Stem-like Properties Promote Tumor Control in Response to Vaccination and Checkpoint Blockade Immunotherapy. Immunity. 2019;50:195–211. doi: 10.1016/j.immuni.2018.12.021. PubMed DOI
Hudson WH, Gensheimer J, Hashimoto M, et al. Proliferating Transitory T Cells with an Effector-like Transcriptional Signature Emerge from PD-1+ Stem-like CD8+ T Cells during Chronic Infection. Immunity. 2019;51:1043–58. doi: 10.1016/j.immuni.2019.11.002. PubMed DOI PMC
Miller BC, Sen DR, Al Abosy R, et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol. 2019;20:326–36. doi: 10.1038/s41590-019-0312-6. PubMed DOI PMC
Andreatta M, Corria-Osorio J, Müller S, et al. Interpretation of T cell states from single-cell transcriptomics data using reference atlases. Nat Commun. 2021;12:2965. doi: 10.1038/s41467-021-23324-4. PubMed DOI PMC
Im SJ, Hashimoto M, Gerner MY, et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature New Biol. 2016;537:417–21. doi: 10.1038/nature19330. PubMed DOI PMC
Klein C, Waldhauer I, Nicolini VG, et al. Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: Overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. Oncoimmunology. 2017;6:e1277306. doi: 10.1080/2162402X.2016.1277306. PubMed DOI PMC
Hori T, Uchiyama T, Tsudo M, et al. Establishment of an interleukin 2-dependent human T cell line from a patient with T cell chronic lymphocytic leukemia who is not infected with human T cell leukemia/lymphoma virus. Blood. 1987;70:1069–72. PubMed
Hao Y, Stuart T, Kowalski MH, et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat Biotechnol. 2024;42:293–304. doi: 10.1038/s41587-023-01767-y. PubMed DOI PMC
McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Syst. 2019;8:329–37. doi: 10.1016/j.cels.2019.03.003. PubMed DOI PMC
Cortal A, Martignetti L, Six E, et al. Gene signature extraction and cell identity recognition at the single-cell level with Cell-ID. Nat Biotechnol. 2021;39:1095–102. doi: 10.1038/s41587-021-00896-6. PubMed DOI
Franzén O, Gan L-M, Björkegren JLM. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database (Oxford) 2019;2019:baz046. doi: 10.1093/database/baz046. PubMed DOI PMC
Andreatta M, Carmona SJ. UCell: Robust and scalable single-cell gene signature scoring. Comput Struct Biotechnol J. 2021;19:3796–8. doi: 10.1016/j.csbj.2021.06.043. PubMed DOI PMC
Strohl WR. Optimization of Fc-mediated effector functions of monoclonal antibodies. Curr Opin Biotechnol. 2009;20:685–91. doi: 10.1016/j.copbio.2009.10.011. PubMed DOI
Silva JP, Vetterlein O, Jose J, et al. The S228P mutation prevents in vivo and in vitro IgG4 Fab-arm exchange as demonstrated using a combination of novel quantitative immunoassays and physiological matrix preparation. J Biol Chem. 2015;290:5462–9. doi: 10.1074/jbc.M114.600973. PubMed DOI PMC
Mortier E, Quéméner A, Vusio P, et al. Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins. J Biol Chem. 2006;281:1612–9. doi: 10.1074/jbc.M508624200. PubMed DOI
Antosova Z, Podzimkova N, Tomala J, et al. SOT101 induces NK cell cytotoxicity and potentiates antibody-dependent cell cytotoxicity and anti-tumor activity. Front Immunol. 2022;13:989895. doi: 10.3389/fimmu.2022.989895. PubMed DOI PMC
Bouchaud G, Garrigue-Antar L, Solé V, et al. The exon-3-encoded domain of IL-15ralpha contributes to IL-15 high-affinity binding and is crucial for the IL-15 antagonistic effect of soluble IL-15Ralpha. J Mol Biol. 2008;382:1–12. doi: 10.1016/j.jmb.2008.07.019. PubMed DOI
Wei X, Orchardson M, Gracie JA, et al. The Sushi Domain of Soluble IL-15 Receptor α Is Essential for Binding IL-15 and Inhibiting Inflammatory and Allogenic Responses In Vitro and In Vivo. J Immunol. 2001;167:277–82. doi: 10.4049/jimmunol.167.1.277. PubMed DOI
Lo M, Kim HS, Tong RK, et al. Effector-attenuating Substitutions That Maintain Antibody Stability and Reduce Toxicity in Mice. J Biol Chem. 2017;292:3900–8. doi: 10.1074/jbc.M116.767749. PubMed DOI PMC
Baudino L, Shinohara Y, Nimmerjahn F, et al. Crucial role of aspartic acid at position 265 in the CH2 domain for murine IgG2a and IgG2b Fc-associated effector functions. J Immunol. 2008;181:6664–9. doi: 10.4049/jimmunol.181.9.6664. PubMed DOI
Hos BJ, Camps MGM, van den Bulk J, et al. Identification of a neo-epitope dominating endogenous CD8 T cell responses to MC-38 colorectal cancer. Oncoimmunology. 2019;9:1673125. doi: 10.1080/2162402X.2019.1673125. PubMed DOI PMC
Thurber GM, Dane Wittrup K. A mechanistic compartmental model for total antibody uptake in tumors. J Theor Biol. 2012;314:57–68. doi: 10.1016/j.jtbi.2012.08.034. PubMed DOI PMC
van Brummelen EMJ, Huisman MC, de Wit-van der Veen LJ, et al. 89Zr-labeled CEA-targeted IL-2 variant immunocytokine in patients with solid tumors: CEA-mediated tumor accumulation and role of IL-2 receptor-binding. Oncotarget. 2018;9:24737–49. doi: 10.18632/oncotarget.25343. PubMed DOI PMC
Zahran AM, Rayan A, Zahran ZAM, et al. Overexpression of PD-1 and CD39 in tumor-infiltrating lymphocytes compared with peripheral blood lymphocytes in triple-negative breast cancer. PLoS ONE. 2022;17:e0262650. doi: 10.1371/journal.pone.0262650. PubMed DOI PMC
Lee J, Lee K, Bae H, et al. IL-15 promotes self-renewal of progenitor exhausted CD8 T cells during persistent antigenic stimulation. Front Immunol. 2023;14:1117092. doi: 10.3389/fimmu.2023.1117092. PubMed DOI PMC
Guo Y, Xie Y-Q, Gao M, et al. Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity. Nat Immunol. 2021;22:746–56. doi: 10.1038/s41590-021-00940-2. PubMed DOI PMC
Ribot JC, Ribeiro ST, Correia DV, et al. Human γδ thymocytes are functionally immature and differentiate into cytotoxic type 1 effector T cells upon IL-2/IL-15 signaling. J Immunol. 2014;192:2237–43. doi: 10.4049/jimmunol.1303119. PubMed DOI
Mao C, Mou X, Zhou Y, et al. T cells via their antigen-presenting cell-like effects. J Immunol Res. 2014;2014:593562. doi: 10.1155/2014/593562. PubMed DOI PMC
de Vries NL, van de Haar J, Veninga V, et al. γδ T cells are effectors of immunotherapy in cancers with HLA class I defects. Nature New Biol. 2023;613:743–50. doi: 10.1038/s41586-022-05593-1. PubMed DOI PMC
Schönefeldt S, Wais T, Herling M, et al. The Diverse Roles of γδ T Cells in Cancer: From Rapid Immunity to Aggressive Lymphoma. Cancers (Basel) 2021;13:6212. doi: 10.3390/cancers13246212. PubMed DOI PMC
ClinicalTrials.gov
NCT06163391