Thermal homogenization of boreal communities in response to climate warming

. 2025 Apr 29 ; 122 (17) : e2415260122. [epub] 20250421

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40258150

Grantová podpora
Jane and Aatos Erkko Foundation
856506 EC | ERC | HORIZON EUROPE European Research Council (ERC)
Swedish University of Agricultural Sciences
322266 Research Council of Finland (AKA)
347188 Research Council of Finland (AKA)
330739 Research Council of Finland (AKA)
340280 Research Council of Finland (AKA)
FR-2019/0007 Swedish Research Council FORMAS
RVO 67985939 CAS | Institute of Botany of the Czech Academy of Sciences (Institute of Botany of the ASCR)
362647 Research Council of Finland (AKA)
361416 Research Council of Finland (AKA)
101027534 EC | Horizon 2020 Framework Programme (H2020)

Globally, rising temperatures are increasingly favoring warm-affiliated species. Although changes in community composition are typically measured by the mean temperature affinity of species (the community temperature index, CTI), they may be driven by different processes and accompanied by shifts in the diversity of temperature affinities and breadth of species thermal niches. To resolve the pathways to community warming in Finnish flora and fauna, we examined multidecadal changes in the dominance and diversity of temperature affinities among understory forest plant, freshwater phytoplankton, butterfly, moth, and bird communities. CTI increased for all animal communities, with no change observed for plants or phytoplankton. In addition, the diversity of temperature affinities declined for all groups except butterflies, and this loss was more pronounced for the fastest-warming communities. These changes were driven in animals mainly by a decrease in cold-affiliated species and an increase in warm-affiliated species. In plants and phytoplankton the decline of thermal diversity was driven by declines of both cold- and warm-affiliated species. Plant and moth communities were increasingly dominated by thermal specialist species, and birds by thermal generalists. In general, climate warming outpaced changes in both the mean and diversity of temperature affinities of communities. Our results highlight the complex dynamics underpinning the thermal reorganization of communities across a large spatiotemporal gradient, revealing that extinctions of cold-affiliated species and colonization by warm-affiliated species lag behind changes in ambient temperature, while communities become less thermally diverse. Such changes can have important implications for community structure and ecosystem functioning under accelerating rates of climate change.

Animal Demography and Ecology Unit The Mediterranean Institute for Advanced Studies Spanish National Research Council University of the Balearic Islands Esporles ES 07190 Spain

Department of Aquatic Sciences and Assessment Swedish University of Agricultural Sciences Uppsala SE 75007 Sweden

Department of Biology University of Turku Turku FI 20014 Finland

Department of Botany Palacký University in Olomouc Olomouc CZ 777900 Czech Republic

Department of Ecology Swedish University of Agricultural Sciences Uppsala SE 75007 Sweden

Department of Environment Forest and Nature Lab Ghent University Gontrode B 9090 Belgium

Department of Geobotany and Botanical Garden Martin Luther University Halle Wittenberg D 06099 Germany

Department of Mathematics and Statistics Faculty of Science University of Helsinki Helsinki FI 00014 Finland

Department of Urban and Rural Development Swedish University of Agricultural Sciences Uppsala SE 75007 Sweden

Department of Vegetation Ecology Faculty of Forestry Technical University in Zvolen Zvolen SK 96053 Slovakia

Department of Zoology Centre for Ecological Genomics and Wildlife Conservation University of Johannesburg Auckland Park ZA 2006 South Africa

Faculty of Biological and Environmental Sciences Research Center for Ecological Change Ecosystems and Environment Research Programme University of Helsinki Helsinki FI 00014 Finland

Finnish Museum of Natural History University of Helsinki Helsinki FI 00014 Finland

Institute of Botany Czech Academy of Sciences Brno CZ 60200 Czech Republic

Institute of Geography and Geoecology Karlsruhe Institute of Technology Karlsruhe D 76131 Germany

Kainuu Centre for Economic Development Transport and the Environment Kajaani FI 87101 Finland

Natural Resources Institute Finland Helsinki FI 00790 Finland

Nature Solutions Unit Finnish Environment Institute Helsinki FI 00790 Finland

Norwegian Institute for Water Research Oslo NO 0579 Norway

Research Center for Ecological Change Organismal and Evolutionary Research Programme Faculty of Biological and Environmental Sciences University of Helsinki Helsinki FI 00014 Finland

Zobrazit více v PubMed

Hällfors M. H., et al. , Combining range and phenology shifts offers a winning strategy for boreal Lepidoptera. Ecol. Lett. 24, 1619–1632 (2021). PubMed

Lenoir J., et al. , Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020). PubMed

Lenoir J., Gégout J. C., Marquet P. A., de Ruffray P., Brisse H., A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008). PubMed

McLean M., et al. , Disentangling tropicalization and deborealization in marine ecosystems under climate change. Curr. Biol. 31, 4817–4823.e5 (2021). PubMed

Oliver T. H., et al. , Large extents of intensive land use limit community reorganization during climate warming. Glob. Change Biol. 23, 2272–2283 (2017). PubMed PMC

Devictor V., et al. , Differences in the climatic debts of birds and butterflies at a continental scale. Glob. Change Biol. 2, 121–124 (2012).

Villén-Peréz S., Heikkinen J., Salemaa M., Mäkipää R., Global warming will affect the maximum potential abundance of boreal plant species. Ecography 43, 801–811 (2020).

Nieto-Sánchez S., Gutiérrez D., Wilson R. J., Long-term change and spatial variation in butterfly communities over an elevational gradient: Driven by climate, buffered by habitat. Divers. Distrib. 21, 950–961 (2015).

Khaliq I., et al. , Warming underpins community turnover in temperate freshwater and terrestrial communities. Nat. Commun. 15, 1921 (2024). PubMed PMC

E. E. Ellis et al., Extinction in the north and colonisation in the south: The latitudinal drivers of community warming (2024). 10.21203/rs.3.rs-4899409/v1. Accessed 1 January 2025. DOI

Gaget E., et al. , Benefits of protected areas for nonbreeding waterbirds adjusting their distributions under climate warming. Conserv. Biol. 35, 834–845 (2021). PubMed PMC

Fourcade Y., et al. , Habitat amount and distribution modify community dynamics under climate change. Ecol. Lett. 24, 950–957 (2021). PubMed

Tayleur C. M., et al. , Regional variation in climate change winners and losers highlights the rapid loss of cold-dwelling species. Divers. Distrib. 22, 468–480 (2016).

Marjakangas E. L., et al. , Effects of diversity on thermal niche variation in bird communities under climate change. Sci. Rep. 12, 21810 (2022). PubMed PMC

Burrows M. T., et al. , Ocean community warming responses explained by thermal affinities and temperature gradients. Glob. Change Biol. 9, 959–963 (2019).

Auffret A. G., Thomas C. D., Synergistic and antagonistic effects of land use and non-native species on community responses to climate change. Glob. Change Biol. 25, 4303–4314 (2019). PubMed

Engelhardt E. K., et al. , Consistent signals of a warming climate in occupancy changes of three insect taxa over 40 years in Central Europe. Glob. Change Biol. 28, 3998–4012 (2022). PubMed

Rantanen M., et al. , The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).

Fronzek S., Carter T. R., Jylhä K., Representing two centuries of past and future climate for assessing risks to biodiversity in Europe. Glob. Ecol. Biogeogr. 21, 19–35 (2011).

Ramalho Q., et al. , Evidence of stronger range shift response to ongoing climate change by ectotherms and high-latitude species. Biol. Conserv. 279, 109911 (2023).

Keret N. M., Mutanen M. J., Orell M. I., Itamies J. H., Valimaki P. M., Climate change-driven elevational changes among boreal nocturnal moths. Oecologia 192, 1085–1098 (2020). PubMed PMC

Warren M., et al. , Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001). PubMed

Ruohomäki K., et al. , Causes of cyclicity of Epirrita autumnata (Lepidoptera, Geometridae): Grandiose theory and tedious practice. Popul. Ecol. 42, 211–223 (2000).

Devictor V., Julliard R., Couvet D., Jiguet F., Birds are tracking climate warming, but not fast enough. Proc. Biol. Sci. 275, 2743–2748 (2008). PubMed PMC

Santangeli A., Rajasarkka A., Lehikoinen A., Effects of high latitude protected areas on bird communities under rapid climate change. Glob. Change Biol. 23, 2241–2249 (2017). PubMed

Zellweger F., et al. , Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020). PubMed

Bertrand R., et al. , Ecological constraints increase the climatic debt in forests. Nat. Commun. 7, 12643 (2016). PubMed PMC

Tonteri T., et al. , Forest management regulates temporal change in the cover of boreal plant species. For. Ecol. Manage. 381, 115–124 (2016).

Kaarlejärvi E., et al. , Temporal biodiversity change following disturbance varies along an environmental gradient. Glob. Ecol. Biogeogr. 30, 476–489 (2020).

Christiansen D. M., Iversen L. L., Ehrlén J., Hylander K., Changes in forest structure drive temperature preferences of boreal understorey plant communities. J. Ecol. 110, 631–643 (2021).

Weigel B., Kotamaki N., Malve O., Vuorio K., Ovaskainen O., Macrosystem community change in lake phytoplankton and its implications for diversity and function. Glob. Ecol. Biogeogr. 32, 295–309 (2023). PubMed PMC

F. Dory et al., Interaction between temperature and nutrients: How does the phytoplankton community cope with climate change? Sci. Total Environ. 906, 167566 (2024). PubMed

Burrows M. T., et al. , The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011). PubMed

Maileht K., et al. , Water colour, phosphorus and alkalinity are the major determinants of the dominant phytoplankton species in European lakes. Hydrobiologia 704, 115–126 (2012).

Holopainen S., Lehikoinen A., Role of forest ditching and agriculture on water quality: Connecting the long-term physico-chemical subsurface state of lakes with landscape and habitat structure information. Sci. Total Environ. 806, 151477 (2022). PubMed

Hällfors M. H., et al. , Recent range shifts of moths, butterflies, and birds are driven by the breadth of their climatic niche. Evol. Lett. 8, 89–100 (2023). PubMed PMC

Montràs-Janer T., et al. , Anthropogenic climate and land-use change drive short- and long-term biodiversity shifts across taxa. Nat. Ecol. Evol. 8, 739–751 (2024). PubMed PMC

Auffret A. G., Svenning J. C., Climate warming has compounded plant responses to habitat conversion in Northern Europe. Nat. Commun. 13, 7818 (2022). PubMed PMC

Gelfand A. E., Statistical challenges in spatial analysis of plant ecology data. Spat. Stat. 37, 100418 (2020).

Giraud C., Calenge C., Coron C., Julliard R., Capitalizing on opportunistic data for monitoring relative abundances of species. Biometrics 72, 649–658 (2016). PubMed

Wolf C., Ripple W. J., Betts M. G., Levi T., Peres C. A., Eating plants and planting forests for the climate. Glob. Change Biol. 25, 3995 (2019). PubMed

Wu Z., Dijkstra P., Koch G. W., PeÑUelas J., Hungate B. A., Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Glob. Change Biol. 17, 927–942 (2011).

Jamieson M. A., Trowbridge A. M., Raffa K. F., Lindroth R. L., Consequences of climate warming and altered precipitation patterns for plant–insect and multitrophic interactions. Plant Physiol. 160, 1719–1727 (2012). PubMed PMC

Stephenson N., Actual evapotranspiration and deficit: Biologically meaningful correlates of vegetation distribution across spatial scales. J. Biogeogr. 25, 855–870 (2003).

Schweiger O., Harpke A., Wiemers M., Settele J., CLIMBER: Climatic niche characteristics of the butterflies in Europe. Zookeys 65, 65–84 (2014). PubMed PMC

Settele J., et al. , ALARM: Assessing large-scale environmental risks for biodiversity with tested methods. GAIA—Ecol. Perspect. Sci. Soc. 14, 69–72 (2005).

Fibiger M., Noctuidae Europaeae (Entomological Press, Sorø, Denmark, 1990), vol. 1.

Fibiger M., Noctuidae Europaeae (Entomological Press, Sorø, Denmark, 1993), vol. 2.

M. Fibiger, Noctuidae Europaeae (Entomological Press, Sorø, Denmark, 2009), vol. 11.

M. Fibiger, H. Hacker, Noctuidae Europaeae (Entomological Press, Sorø, Denmark, 2007), vol. 9.

Fibiger M., Hacker H., Goater B., Noctuidae Europaeae (Entomological Press, Sorø, Denmark, 1995), vol. 7.

Fibiger M., Ronkay L., Yela J. L., Zilli A., Noctuidae Europaeae (Entomological Press, Sorø, Denmark, 2010), vol. 12.

Freina J. J., de Witt T. J., Die Bombyces und Sphinges der Westpalaearktis (Forschung & Wissenschaft Verlag GmbH, Munich, Germany, 1987), vol. 1.

J. J. Freina, T. J. de Witt, Die Bombyces und Sphinges der Westpalaearktis (Forschung & Wissenschaft Verlag GmbH, Munich, Germany, 1990).

Goater B., Fibiger M., Ronkay L., Noctuidae Europaeae (Entomological Press, Sorø, Denmark, 2003), vol. 10.

Hacker H., Hreblay M., Ronkay L., Noctuidae Europaeae (Entomological Press, Sorø, Denmark, 2002), vol. 4.

A. Hausmann, V. Mironov, P. Sihvonen, P. Skou, J. Viidalepp, The Geometrid Moths of Europe (update) (Apollo Books, Stensrup, Denmark, 2014).

Hausmann A., Viidalepp J., The Geometrid Moths of Europe (Apollo Books, Stensrup, Denmark, 2012), vol. 3.

Haussmann A., The Geometrid Moths of Europe (Apollo Books, Stensrup, Denmark, 2004), vol. 2.

BirdLife International and Handbook of the Birds of the World, Bird species distribution maps of the world. BirdLife (2018). https://datazone.birdlife.org/species/requestdis. Accessed 1 July 2021.

Mironov V., Haussmann A., Wilson D., The Geometrid Moths of Europe (Apollo Books, Stensrup, Denmark, 2003), vol. 4.

Müller B., et al. , The Geometrid Moths of Europe (E J Brill, Leiden, Netherlands, 2019), vol. 6.

Ronkay G., Ronkay L., Noctuidae Europaeae (Entomological Press, Sorø, Denmark, 1994).

Ronkay G., Ronkay L., Speidel W., Witt T., Noctuidae Europaeae (Entomological Press, Sorø, Denmark, 2012), vol. 13.

Ronkay L., Hreblay M., Yela J. L., Noctuidae Europaeae (Entomological Press, Sorø, Denmark, 2001).

Skou P., Sihvonen P., The Geometrid Moths of Europe (E J Brill, Leiden, Netherlands, 2015), vol. 5.

Zilli A., Ronkay L., Fibiger M., Noctuidae Europaeae (Entomological Press, Sorø, Denmark, 2005), vol. 2005.

A. Kurtto, A. Sennikov, R. Lampinen, Atlas Florae Europaeae: Distribution of vascular plants in Europe (The Committee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo, Helsinki, Finland, 2013).

Caudullo G., Welk E., San-Miguel-Ayanz J., Chorological maps for the main European woody species. Data Brief 12, 662–666 (2017). PubMed PMC

Vangansbeke P., et al. , ClimPlant: Realized climatic niches of vascular plants in European forest understoreys. Glob. Ecol. Biogeogr. 30, 1183–1190 (2021).

Kalwij J. M., Robertson M. P., Ronk A., Zobel M., Partel M., Spatially-explicit estimation of geographical representation in large-scale species distribution datasets. PLoS ONE 9, e85306 (2014). PubMed PMC

Kurtto A. K., Sennikov A. N., Lampinen R. E., Atlas Florae Europaeae. Distribution of Vascular Plants in Europe: 17. Rosaceae (Sorbus s. lato) (The Committee for Mapping the Flora of Europe Societas Biologica Fennica, 2018).

Auffret A. G., et al. , More warm-adapted species in soil seed banks than in herb layer plant communities across Europe. J. Ecol. 111, 1009–1020 (2023).

Moe S. J., Schmidt-Kloiber A., Dudley B. J., Hering D., The wiser way of organising ecological data from European rivers, lakes, transitional and coastal waters. Hydrobiologia 704, 11–28 (2012).

Ahti T., Hämet-Ahti L., Jalas J., Vegetation zones and their sections in Northwestern Europe. Ann. Bot. Fenn. 5, 169–211 (1968).

Lehikoinen A., Climate change, phenology and species detectability in a monitoring scheme. Popul. Ecol. 55, 315–323 (2012).

Virkkala R., Lehikoinen A., Patterns of climate-induced density shifts of species: Poleward shifts faster in northern boreal birds than in southern birds. Glob. Change Biol. 20, 2995–3003 (2014). PubMed

J. Heliölä, I. M. Huikkonen, M. Kuussaari, “Maatalousympäristön päiväperhosseuranta 1999–2021” (Tech. Rep. 44, Suomen ympäristökeskuksen raportteja, Helsinki, Finland, 2022).

Kuussaari M., Heliölä J., Luoto M., Pöyry J., Determinants of local species richness of diurnal Lepidoptera in boreal agricultural landscapes. Agric., Ecosyst. Environ. 122, 366–376 (2007).

Leinonen R., Pöyry J., Söderman G., Tuominen-Roto L., Suomen yöperhosyhteisöt muutoksessa–valtakunnallisen yöperhosseurannan keskeisiä tuloksia 1993–2012. Baptria 42, 74–92 (2017).

IM Huikkonen, J. Pöyry, P. Korhonen, R. Leinonen, A. Suuronen, “Valtakunnallinen yöperhosseuranta 30 vuotta (1993–2022)” (Tech. Rep. 26, Suomen ympäristökeskuksen raportteja, Helsinki, Finland, 2024).

A. Reinikainen, R. Mäkipää, I. Vanha-Majamaa, J. Hotanen, Changes in the Frequency and Abundance of Forest and Mire Plants in Finland Since 1950 (Tammi, Helsinki, Finland, 2000) (in Finnish with English summary).

Mäkipää R., Heikkinen J., Large-scale changes in abundance of terricolous bryophytes and macrolichens in Finland. J. Veg. Sci. 14, 497–508 (2003).

Din E., 15204 Water Quality—Guidance Standard on the Enumeration of Phytoplankton Using Inverted Microscopy (Utermöhl Technique) (European Committee for Standardization, Brussels, Belgium, 2006).

Aalto J., Pirinen P., Jylhä K., New gridded daily climatology of Finland: Permutation-based uncertainty estimates and temporal trends in climate. J. Geophys. Res.: Atmos. 121, 3807–3823 (2016).

Besag J., York J., Mollié A., Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 43, 1–20 (1991).

Riebler A., Sorbye S. H., Simpson D., Rue H., An intuitive Bayesian spatial model for disease mapping that accounts for scaling. Stat. Meth. Med. Res. 25, 1145–1165 (2016). PubMed

Jombart T., adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008). PubMed

Rue H., et al. , Bayesian computing with INLA: A review. Annu. Rev. Stat. Its Appl. 4, 395–421 (2017).

J. Mäkinen et al., Data from: Thermal homogenization of boreal communities in response to climate warming [Dataset]. Dryad. 10.5061/dryad.4j0zpc8np. Deposited 8 April 2025. PubMed DOI PMC

Finnish Environment Institute, Finnish National Moth Monitoring. Finnish Biodiversity Information Facility. https://laji.fi/en/observation/list?collectionId=HR.4511. Accessed 1 December 2023.

Finnish Museum of Natural History, Bird line transect. Finnish Biodiversity Information Facility. https://laji.fi/observation/list?target=MX.37580&collectionId=HR.61. Accessed 1 December 2023.

Finnish Environment Institute, Phytoplankton information system – KPLANK. Finnish Environment Institute. https://www.syke.fi/en/environmental-data/open-web-services/environmental-data-apis#phytoplankton. Accessed 1 August 2022.

Finnish Environment Institute, European Butterfly Monitoring Scheme. https://butterfly-monitoring.net/ebms-dataaccess. Accessed 1 August 2022.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...