Phenotypic characterization of soybean genetic resources at multiple locations: breeding implications for enhancing environmental resilience, yield and protein content
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40260437
PubMed Central
PMC12009817
DOI
10.3389/fpls.2025.1422162
Knihovny.cz E-zdroje
- Klíčová slova
- Glycine max, field trials, genotype-environment interactions, morphological and phenological traits, weather data,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Soybean is an important legume crop and a leading source of dietary protein and oil in animal feed, as well as an important food for human consumption. The objective of our research was to study soybean genetic resources in context of future protein self-sufficiency both in human and animal nutrition. METHODS: Collection of 360 different accessions from various regions worldwide was evaluated across four European locations during two consecutive years in phenotyping trials. The five most important traits of soybean - plant emergence, plant length, protein content, seed yield, and R8 stage - were carefully analysed, revealing significant variability. RESULTS: Ten exceptionally stable genotypes were identified based on their protein content and yield, presenting promising candidates for breeding programs. DISCUSSION: Our findings underscore the importance of integrating genotype-environment interaction analyses into breeding initiatives, considering the observed variability in phenotypic traits across diverse environments and genotypes.
Agricultural Research Ltd Troubsko Czechia
Agro Seed Research bv Opglabbeek Belgium
Zobrazit více v PubMed
Alghamdi S. S. (2004). Yield stability of some soybean genotypes across diverse environments. Pak. J. Biol. Sci 7, 2109–2114. doi: 10.3923/PJBS.2004.2109.2114 DOI
Araji H. A., Wayayok A., Bavani A. R. M., Amiri E., Abdullah A. F., Daneshian J., et al. . (2018). Impacts of climate change on soybean production under different treatments of field experiments considering the uncertainty of general circulation models. Agric. Water Manage 205, 63–71. doi: 10.1016/j.agwat.2018.04.023 DOI
Balko C., Hahn V., Ordon F. (2014). Chilling tolerance in soybeans (Glycine max) - a prerequisite for soybean cultivation in Germany. J. fur Kult 66, 378–388. doi: 10.5073/JfK.2014.11.02 DOI
Barnes S. (2010). The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphat. Res. Biol 8, 89–98. doi: 10.1089/lrb.2009.0030 PubMed DOI PMC
Bates D., Mächler M., Bolker B., Walker S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Software 67, 1–48. doi: 10.18637/jss.v067.i01 DOI
Berschneider J. (2016). Chances and limitations of european soybean production: market potential analysis [master’s thesis] (Stuttgart (Germany: Universität Hohenheim; ).
Borra-Serrano I., De Swaef T., Quataert P., Aper J., Saleem A., Saeys W., et al. . (2020). Closing the phenotyping gap: high resolution UAV time series for soybean growth analysis provides objective data from field trials. Remote Sens 12, 1644. doi: 10.3390/rs12101644 DOI
Carrera C., Dardanelli J., Soldini D. O. (2014). Genotypic and environmental variation in seed nutraceutical and industrial composition of non-transgenic soybean (Glycine max) genotypes. Crop Pasture Sci 65, 1311–1322. doi: 10.1071/CP14114 DOI
Ceglar A., Zampieri M., Toreti A., Dentener F. (2019). Observed northward migration of agro-climate zones in Europe will further accelerate under climate change. Earth's Future 7, 1088–1101. doi: 10.1029/2019EF001178 DOI
Chen L. R., Ko N. Y., Chen K. H. (2019). Isoflavone supplements for menopausal women: a systematic review. Nutrients 11, 2649. doi: 10.3390/nu11112649 PubMed DOI PMC
Cicero A. F. G., Fogacci F., Colletti A. (2017). Potential role of bioactive peptides in prevention and treatment of chronic diseases: a narrative review. Br. J. Pharmacol 174, 1378–1394. doi: 10.1111/bph.13608 PubMed DOI PMC
Cullis B. R., Smith A. B., Coombes N. E. (2006). On the design of early generation variety trials with correlated data. J. Agr. Biol. Envir. St 11, 381–393. doi: 10.1198/108571106x154443 DOI
de Avila A. M. H., Farias J. B., Pinto H. S., Pilau F. G. (2013). “Climatic restrictions for maximizing soybean yields,” in A comprehensive survey of international soybean research - genetics, physiology, agronomy and nitrogen relationships (IntechOpen Limited, London: ), 367–375.
Đorđević V., Balešević-Tubić S., Miladinović J., Vasiljević M. (2021).Harvesting soybean. In: Legumes translated practice note 23. Institute of field and vegetable crops novi sad. Available online at: https://www.legumestranslated.eu/ (Accessed October 3, 2023).
Ebert A. W. (2020). The role of vegetable genetic resources in nutrition security and vegetable breeding. Plants 9, 736. doi: 10.3390/plants9060736 PubMed DOI PMC
Elmerich C., Boulch G., Faucon M., Lakhal L., Lange B. (2023). Identification of eco-climatic factors driving yields and genotype by environment interactions for yield in early maturity soybean using crop simulation. Agronomy 13, 322. doi: 10.3390/agronomy13020322 DOI
EUROStat (2021). Available online at: https://ec.europa.eu/eurostat/de/. (Accessed May 25, 2023)
Fan Y., Wang M., Li Z., Jiang H., Shi J., Shi X., et al. . (2022). Intake of soy, soy isoflavones and soy protein and risk of cancer incidence and mortality. Front. Nutr 9. doi: 10.3389/fnut.2022.847421 PubMed DOI PMC
FAOStat (2021). Available online at: http://www.fao.org/faostat/en/data. (Accessed May 25, 2023)
FAOSTAT (2023). Food and agriculture organization of the united nations (FAOSTAT; ). Available online at: www.faostat.org (Accessed May 25, 2023).
Gawęda D., Nowak A., Haliniarz M., Woźniak A. (2020). Yield and economic effectiveness of soybean grown under different cropping systems. Int. J. Plant Prod 14, 475–485. doi: 10.1007/s42106-020-00098-1 DOI
Gonçalves S. L., Farias J. R. B., Sibaldelli R. N. R. (2021). Soybean production and yield in the context of global climatic changes. CABI Rev 16, 11. doi: 10.1079/PAVSNNR202116011 DOI
Gorissen S. H., Witard O. C. (2018). Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults. Proc. Nutr. Soc 77, 20–31. doi: 10.1017/S002966511700194X PubMed DOI
Guilpart N., Iizumi T., Makowski D. (2022). Data-driven projections suggest large opportunities to improve Europe’s soybean self-sufficiency under climate change. Nat. Food 3, 255–265. doi: 10.1038/s43016-022-00481-3 PubMed DOI
Guo B., Sun L., Jiang S., Ren H., Sun R., Wei Z., et al. . (2022). Soybean genetic resources contributing to sustainable protein production. Theor. Appl. Genet 135, 4095–4121. doi: 10.1007/s00122-022-04222-9 PubMed DOI PMC
Halewood M., Chiurugwi T., Sackville-Hamilton R., Kurtz B., Marden E., Welch E., et al. . (2018). Plant genetic resources for food and agriculture: opportunities and challenges emerging from the science and information technology revolution. New Phytol 217, 1407–1419. doi: 10.1111/nph.14993 PubMed DOI
Hartman G. L., West E. D., Herman T. K. (2011). Crops that feed the World 2. Soybean-worldwide production, use, and constraints caused by pathogens and pests. Food Secur 3, 5–17. doi: 10.1007/s12571-010-0108-x DOI
He F.-J., Chen J.-Q. (2013). Consumption of soybean, soy foods, soy isoflavones and breast cancer incidence: Differences between Chinese women and women in Western countries and possible mechanisms. Food Sci. Hum. Wellness 2, 146–161. doi: 10.1016/j.fshw.2013.08.002 DOI
Hymowitz T., Harlan J. R. (1983). Introduction of soybean to north america by samuel bowen in 1765. Economic Bot 37, 371–379. Available at: http://www.jstor.org/stable/4254529. (Accessed May 15, 2023)
Iriondo J. M., Maxted N., Dulloo M. E. (2008). Conserving plant genetic diversity in protected areas: Population management of crop wild relatives (Oxford: CAB International, Wallingsford; ), 212.
Jayachandran M., Xu B. (2019). An insight into the health benefits of fermented soy products. Food Chem 271, 362–371. doi: 10.1016/j.foodchem.2018.07.158 PubMed DOI
Jeong S. C., Moon J. K., Park S. K., Kim M. S., Lee K., Lee S. R., et al. . (2019). Genetic diversity patterns and domestication origin of soybean. Theor. Appl. Genet 132, 1179–1193. doi: 10.1007/s00122-018-3271-7 PubMed DOI PMC
Jia H., Jiang B., Wu C., Lu W., Hou W., Sun S., et al. . (2014). Maturity group classification and maturity locus genotyping of early-maturing soybean varieties from high-latitude cold regions. PloS One 9, e94139. doi: 10.1371/journal.pone.0094139 PubMed DOI PMC
Kang M., Harville B. G., Gorman D. (1989). Contribution of weather variables to genotype × environment interaction in soybean. Field Crops Res 21, 297–300. doi: 10.1016/0378-4290(89)90011-7 DOI
Kantolic A. G., Slafer G. A. (2005). Reproductive development and yield components in indeterminate soybean as affected by post-flowering photoperiod. Field Crops Res 93, 212–222. doi: 10.1016/j.fcr.2004.10.001 DOI
Kao T.-H., Chen B.-H. (2006). Functional components in soybean cake and their effects on antioxidant activity. J. Agric. Food Chem 54, 7544–7555. doi: 10.1021/jf061586x PubMed DOI
Karges K., Bellingrath-Kimura S. D., Watson C. A., Stoddard F. L., Halwani M., Reckling M. (2022). Agro-economic prospects for expanding soybean production beyond its current northerly limit in Europe. Eur. J. Agron 133, 126415. doi: 10.1016/j.eja.2021.126415 DOI
Kato S., Sayama T., Taguchi-Shiobara F., Kikuchi A., Ishimoto M., Cober E. (2019). Effect of change from a determinate to a semi-determinate growth habit on the yield and lodging resistance of soybeans in the northeast region of Japan. Breed. Sci 69, 151–159. doi: 10.1270/jsbbs.18112 PubMed DOI PMC
Kim M. Y., Van K., Kang Y. J., Kim K. H., Lee S.-H. (2012). Tracing soybean domestication history: from nucleotide to genome. Breed. Sci 61, 445–452. doi: 10.1270/jsbbs.61.445 PubMed DOI PMC
Klaiss M., Schmid N., Betrix C.-A., Baux A., Charles R., Messmer M. M. (2020). Organic soybean production in Switzerland. OCL 27, 64. doi: 10.1051/ocl/2020059 DOI
Krisnawati A., Adie M. M. (2018). Yield stability of soybean genotypes in tropical environments based on genotype and genotype-by-environment biplot. J. Agron. Indonesia 46, 231–239. doi: 10.24831/jai.v46i3.18333 DOI
Kühling I., Hüsing B., Bome N., Trautz D. (2018). Soybeans in high latitudes: effects of Bradyrhizobium inoculation in Northwest Germany and southern West Siberia. Org. Agric 8, 159–171. doi: 10.1007/s13165-017-0181-y DOI
Kurasch A., Hahn V., Leiser W., Vollmann J., Schori A., Betrix C.-A., et al. . (2017). Identification of mega-environments in Europe and effect of allelic variation at maturity E loci on adaptation of European soybean. Plant Cell Environ 40, 765–778. doi: 10.1111/pce.12896 PubMed DOI
Kuznetsova A., Brockhoff P. B., Christensen R. H. B. (2017). lmerTest package: tests in linear mixed effects models. J. Stat. Software 82, 1–26. doi: 10.18637/jss.v082.i13 DOI
Lenth R. (2024). emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.10.5. Available online at: https://rvlenth.github.io/emmeans/. (Accessed March 27, 2024)
Lian L., de los Campos G. (2016). FW: an R package for finlay–wilkinson regression that incorporates genomic/pedigree information and covariance structures between environments. G3 Genes Genom. Genet 6, 589–597. doi: 10.1534/g3.115.026328 PubMed DOI PMC
Liu J., Chang S. K. C., Wiesenborn D. (2005). Antioxidant properties of soybean isoflavone extract and tofu in vitro and in vivo . J. Agric. Food Chem 53, 2333–2340. doi: 10.1021/jf048552e PubMed DOI
Mandić V., Bijelić Z., Krnjaja V. S., Simić A., Ružić-Muslić D., Dragičević V., et al. . (2017). The rainfall use efficiency and soybean grain yield under rainfed conditions in Vojvodina. Bio. Anim. Husb 33, 475–486. doi: 10.2298/BAH1704475M DOI
Muluneh M. G. (2021). Impact of climate change on biodiversity and food security: a global perspective–a review article. Agric. Food Secur 10, 36. doi: 10.1186/s40066-021-00318-5 DOI
Munger P., Bleiholder H., Hack H., Hess M., Stauss R., Van den Boom T., et al. . (1997). Phenological growth stages of the soybean plant (Glycine max L. Merr.): codification and description according to the BBCH scale. J. Agron. Crop Sci 179, 209–217. doi: 10.1111/j.1439-037X.1997.tb00519.x DOI
Natarajan S., Khan F., Song Q., Lakshman S., Cregan P., Scott R., et al. . (2016). Characterization of soybean storage and allergen proteins affected by environmental and genetic factors. J. Agric. Food Chem 64, 1433–1445. doi: 10.1021/acs.jafc.5b05172 PubMed DOI
Nendel C., Reckling M., Schulz S., Berg-Mohnicke M., Constantin J., Debaeke P., et al. . (2023). Future area expansion outweighs increasing drought risk for soybean in Europe. Glob. Change Biol 29, 1340–1358. doi: 10.1111/gcb.16562 PubMed DOI
Ngalamu T., Ashraf M., Meseka S. (2013). Soybean (Glycine max L) genotype and environment interaction effect on yield and other related traits. Am. J. Exp. Agric 3, 977–987. doi: 10.9734/AJEA/2013/5069 DOI
Ohara M., Shimamoto Y. (2002). Importance of genetic characterization and conservation of plant genetic resources: The breeding system and genetic diversity of wild soybean (Glycine soja). Plant Species Biol 17, 51–58. doi: 10.1046/j.1442-1984.2002.00073.x DOI
Oliveira A., Duarte J., Chaves L., Couto M. A. (2006). Environmental and genotypic factors associated with genotype by environment interactions in soybean. Crop Breed. Appl. Biot 6, 79–86. doi: 10.12702/1984-7033.V06N01A11 DOI
Ortel C. C., Roberts T. L., Hoegenauer K. A., Purcell L. C., Slaton N. A., Gbur E. E. (2020). Soybean maturity group and planting date influence grain yield and nitrogen dynamics. Agrosyst. Geosci. Environ 3, e20077. doi: 10.1002/agg2.20077 DOI
Perić V., Srebrić M., Nikolić A., Ristić D., Mladenović-Drinić S., Dumanović Z. (2021). Stability of yield and seed composition in early maturing soybean genotypes assessed by AMMI analysis. Genetika 53, 323–338. doi: 10.2298/GENSR2101323P DOI
Persa R., Graef G., Specht J., Rios E., Messina C., Jarquín D. (2022). Enhancing genomic prediction models for forecasting days to maturity in soybean genotypes using site-specific and cumulative photoperiod data. Agriculture. 12 (4). doi: 10.3390/agriculture12040545 DOI
Qiu L. J., Chang R. Z. (2010). “The origin and history of soybean,” in The soybean: botany, production and uses. 1–23. Ed. Guriqbal S. C. (CABI, Wallingford: ).
Rani A., Kumar V. (2022). “Soybean breeding,” in Fundamentals of field crop breeding (Springer Nature Singapore, Singapore: ), 907–944.
Saleem A., Muylle H., Aper J., Ruttink T., Wang J., Yu D., et al. . (2021). A genome-wide genetic diversity scan reveals multiple signatures of selection in a european soybean collection compared to chinese collections of wild and cultivated soybean accessions. Front. Plant Sci 12. doi: 10.3389/fpls.2021.631767 PubMed DOI PMC
Schori A., Charles R., Peter D. (2003). Soja: sélection, agronomie et production en Suisse. Revue suisse d'Agriculture. 35 (2), 69–67. Available at: https://ira.agroscope.ch/fr-CH/publication/3354 (Accessed May 20, 2024).
Sethi J., Tyagi S., Sameer S. (2012). Assessment of Genotype x Environment Interactions and Stability Analysis in Soybean [Glycine max (L.) Merrill. SKUAST J. Res. 13, 34–39. Available at: https://www.indianjournals.com/ijor.aspx?target=ijor:skuastjr&volume=14&issue=1and2&article=005&type=pdf (Accessed May 20, 2024).
Sharma S., Kaur M., Goyal R., Gill B. S. (2014). Physical characteristics and nutritional composition of some new soybean (Glycine max (L.) Merrill) genotypes. J. Food Sci. Tech 51, 551–557. doi: 10.1007/s13197-011-0517-7 PubMed DOI PMC
Singh G., Shivakumar B. G. (2010). “The role of soybean in agriculture,” in The soybean: Botany, production and uses (CAB International, Oxfordshire, UK: ), 24–47.
Škrabišová M., Dietz N., Zeng S., Chan Y. O., Wang J., Liu Y., et al. . (2022). A novel Synthetic phenotype association study approach reveals the landscape of association for genomic variants and phenotypes. J. Adv. Res 42, 117–133. doi: 10.1016/j.jare.2022.04.004 PubMed DOI PMC
Wang J., Chu S., Zhang H., Zhu Y., Cheng H., Yu D. (2016). Development and application of a novel genome-wide SNP array reveals domestication history in soybean. Sci. Rep 6, 20728. doi: 10.1038/srep20728 PubMed DOI PMC
Yamaguchi N., Yamazaki H., Ohnishi S., Suzuki C., Hagihara S., Miyoshi T., et al. . (2014). Method for selection of soybeans tolerant to seed cracking under chilling temperatures. Breed. Sci 64, 103–108. doi: 10.1270/jsbbs.64.103 PubMed DOI PMC
Yang Q., Lin G., Lv H., Wang C., Yang Y., Liao H. (2020). Environmental and genetic regulation of plant height in soybean. BMC Plant Biol, 21 (1). doi: 10.1186/s12870-021-02836-7 PubMed DOI PMC
Yang W. Y., Wu T. T., Zhang X. Y., Song W. W., Xu C. L., Sun S., et al. . (2019). Critical photoperiod measurement of soybean genotypes in different maturity groups. Crop Sci 59, 2055–2061. doi: 10.2135/cropsci2019.03.0170 DOI
Żarski J., Kuśmierek-Tomaszewska R., Dudek S., Kropkowski M., Kledzik R. (2019). Identifying climatic risk to soybean cultivation in the transitional type of moderate climate in Central Poland. J. Cent. Eur. Agric 20, 143–156. doi: 10.5513/JCEA01/20.1.2210 DOI
Zhu Z., Chen S., Wu X., Xing C., Yuan J. (2018). Determination of soybean routine quality parameters using near-infrared spectroscopy. Food Sci. Nutr 6, 1109–1118. doi: 10.1002/fsn3.652 PubMed DOI PMC
Zuo X., Zhao R., Wu M., Wan Q., Li T. (2023). Soy consumption and the risk of type 2 diabetes and cardiovascular diseases: A systematic review and meta-analysis. Nutrients 15, 1358. doi: 10.3390/nu15061358 PubMed DOI PMC