• This record comes from PubMed

Future area expansion outweighs increasing drought risk for soybean in Europe

. 2023 Mar ; 29 (5) : 1340-1358. [epub] 20230103

Language English Country Great Britain, England Media print-electronic

Document type Journal Article

Grant support
01DR17011A Federal Ministry of Education and Research (BMBF), Germany
330915 Academy of Finland
CZ.02.1.01/0.0/0.0/16_019/000797 Ministry of Education, Youth and Sports of the Czech Republic

The European Union is highly dependent on soybean imports from overseas to meet its protein demands. Individual Member States have been quick to declare self-sufficiency targets for plant-based proteins, but detailed strategies are still lacking. Rising global temperatures have painted an image of a bright future for soybean production in Europe, but emerging climatic risks such as drought have so far not been included in any of those outlooks. Here, we present simulations of future soybean production and the most prominent risk factors across Europe using an ensemble of climate and soybean growth models. Projections suggest a substantial increase in potential soybean production area and productivity in Central Europe, while southern European production would become increasingly dependent on supplementary irrigation. Average productivity would rise by 8.3% (RCP 4.5) to 8.7% (RCP 8.5) as a result of improved growing conditions (plant physiology benefiting from rising temperature and CO2 levels) and farmers adapting to them by using cultivars with longer phenological cycles. Suitable production area would rise by 31.4% (RCP 4.5) to 37.7% (RCP 8.5) by the mid-century, contributing considerably more than productivity increase to the production potential for closing the protein gap in Europe. While wet conditions at harvest and incidental cold spells are the current key challenges for extending soybean production, the models and climate data analysis anticipate that drought and heat will become the dominant limitations in the future. Breeding for heat-tolerant and water-efficient genotypes is needed to further improve soybean adaptation to changing climatic conditions.

See more in PubMed

Ainsworth, E. A., Davey, P. A., Bernacchi, C. J., Dermody, O. C., Heaton, E. A., Moore, D. J., Morgan, P. B., Naidu, S. L., Yoo Ra, H. S., Zhu, X. G., Curtis, P. S., & Long, S. P. (2002). A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Global Change Biology, 8, 695-709.

Allen, R. G., & Wright, J. L. (1997). Translating wind measurements from weather stations to agricultural crops. Journal of Hydrologic Engineering, 2, 26-35.

Alsajri, F. A., Wijewardana, C., Krutz, L. J., Irby, J. T., Golden, B., & Reddy, K. R. (2019). Quantifying and validating soybean seed emergence model as a function of temperature. American Journal of Plant Sciences, 10, 111-124.

Archontoulis, S. V., Miguez, F. E., & Moore, K. J. (2014). A methodology and an optimization tool to calibrate phenology of short-day species included in the APSIM PLANT model: Application to soybean. Environmental Modelling & Software, 62, 465-477.

Avila, A. M. H., Farias, J. R. B., Pinto, H. S., & Pilau, F. G. (2013). Climatic restrictions for maximizing soybean yields. In J. E. Board (Ed.), A comprehensive survey of international soybean research-Genetics, physiology, agronomy and nitrogen relationships (pp. 367-375). Rijeka Intech Press.

Battisti, R., Parker, P. S., Sentelhas, P. C., & Nendel, C. (2017). Gauging the sources of uncertainty in soybean yield simulations using the MONICA model. Agricultural Systems, 155, 9-18.

Battisti, R., Sentelhas, P. C., & Boote, K. J. (2017). Inter-comparison of performance of soybean crop simulation models and their ensemble in southern Brazil. Field Crops Research, 200, 28-37.

Boote, K. J., Allen, L. H., Prasad, P. V. V., Baker, J. T., Gesch, R. W., Snyder, A. M., Pan, D., & Thomas, J. M. G. (2005). Elevated temperature and CO2 impacts on pollination, reproductive growth, and yield of several globally important crops. Journal of Agricultural Meteorololgy, 60, 469-474.

Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., Bertuzzi, P., Burger, P., Bussière, F., Cabidoche, Y. M., Cellier, P., Debaeke, P., Gaudillère, J. P., Hénault, C., Maraux, F., Seguin, B., & Sinoquet, H. (2003). An overview of the crop model STICS. European Journal of Agronomy, 18, 309-332.

Carauta, M., Latynskiy, E., Mossinger, J., Gil, J., Libera, A., Hampf, A., Monteiro, L., Siebold, M., & Berger, T. (2018). Can preferential credit programs speed up the adoption of low-carbon agricultural systems in Mato Grosso, Brazil? Results from bioeconomic microsimulation. Regional Environmental Change, 18, 117-128.

Coleman, K., Whitmore, A. P., Hassall, K. L., Shield, I., Semenov, M. A., Dobermann, A., Bourhis, Y., Eskandary, A., & Milne, A. E. (2021). The potential for soybean to diversify the production of plant-based protein in the UK. Science of the Total Environment, 767, 144903.

Corrales, D. C., Schoving, C., Raynal, H., Debaeke, P., Journet, E. P., & Constantin, J. (2022). A surrogate model based on feature selection techniques and regression learners to improve soybean yield prediction in southern France. Computers and Electronics in Agriculture, 192, 106578.

Denner, M. T., James, A. T., Robertson, M. J., & Fukai, S. (1998). Optimum soybean cultivars for possible expansion area: A modelling approach. Proceedings of the 10th Australian Soybean Conference, Brisbane.

Đorđević, V., Balešević Tubić, S., Miladinović, J., & Vasiljević, M. (2021). Harvesting soybean. Legume hub. http://www.legumehub.eu

Earthstat. (2000). Cropland and pasture area in 2000. http://www.earthstat.org/cropland-pasture-area-2000/

Egli, D. B., & Wardlaw, I. F. (1980). Temperature response of seed growth characteristics of soybeans. Agronomy Journal, 72, 560-564.

Eriksson, D., Kershen, D., Nepomuceno, A., Pogson, B. J., Prieto, H., Purnhagen, K., Smyth, S., Wesseler, J., & Whelan, A. (2019). A comparison of the EU regulatory approach to directed mutagenesis with that of other jurisdictions, consequences for international trade and potential steps forward. New Phytologist, 222, 1673-1684.

European_Commission. (2018). Report from the commission to the council and the European Parliament: On the development of plant proteins in the European Union. European Union.

European_Commission. (2019). Communication from the commission to the European Parliament, the European Council, the Council, the European economic and Social Committee and the Committee of the Regions: The European green deal. European Union.

Eurostat. (2021). European Commission. http://ec.europa.eu/eurostat

FAOSTAT. (2019). Statistics Database of the Food and Agriculture Organization of the United Nations. http://www.fao.org/statistics/databases/en/

Ghafarian, F., Wieland, R., & Nendel, C. (2022). Estimating the evaporative cooling effect of irrigation within and above soybean canopy. Water, 14, 319.

Gibson, L. R., & Mullen, R. E. (1996). Influence of day and night temperature on soybean seed yield. Crop Science, 36, 98-104.

Gray, S. B., Dermody, O., Klein, S. P., Locke, A. M., McGrath, J. M., Paul, R. E., Rosenthal, D. M., Ruiz-Vera, U. M., Siebers, M. H., Strellner, R., Ainsworth, E. A., Bernacchi, C. J., Long, S. P., Ort, D. R., & Leakey, A. D. B. (2016). Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. Nature Plants, 2, 16132.

Guilpart, N., Iizumi, T., & Makowski, D. (2022). Data-driven yield projections suggest large opportunities to improve Europe's soybean self-sufficiency under climate change. Nature Food, 3, 255-265.

Halwani, M., Reckling, M., Egamberdieva, D., Omari, R. A., Bellingrath-Kimura, S. D., Bachinger, J., & Bloch, R. (2021). Soybean nodulation response to cropping interval and inoculation in European cropping systems. Frontiers in Plant Science, 12, 638452.

Hampf, A. C., Stella, T., Berg-Mohnicke, M., Kawohl, T., Kilian, M., & Nendel, C. (2020). Future yields of double-cropping systems in the southern Amazon, Brazil, under climate change and technological development. Agricultural Systems, 177, 102707.

Hatfield, J. L., & Egli, D. B. (1974). Effect of temperature on the rate of soybean hypocotyl elongation and field emergence. Crop Science, 14, 423-426.

Hiederer, R. (2013). Mapping soil properties for Europe-Spatial representation of soil database attributes. Publications Office of the European Union.

Hodson, T. O. (2022). Root mean square error (RMSE) or mean absolute error (MAE): When to use them or not. Geoscientific Model Development, 15, 5481-5487.

Holzworth, D. P., Huth, N. I., Devoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., Chenu, K., van Oosterom, E. J., Snow, V., Murphy, C., Moore, A. D., Brown, H., Whish, J. P. M., Verrall, S., Fainges, J., Bell, L. W., Peake, A. S., Poulton, P. L., Hochman, Z., … Keating, B. A. (2014). APSIM-Evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software, 62, 327-350.

Hristov, J., Toreti, A., Perez Dominguez, I., Dentener, F., Fellmann, T., Elleby, C., Ceglar, A., Fumagalli, D., Niemeyer, S., Cerrani, I., Panarello, L., & Bratu, M. (2020). Analysis of climate change impacts on EU agriculture by 2050. Publications Office of the European Union.

Hufnagel, J., Reckling, M., & Ewert, F. (2020). Diverse approaches to crop diversification in agricultural research. A review. Agronomy for Sustainable Development, 40, 14.

Jégo, G., Pattey, E., Bourgeois, G., Morrison, M. J., Drury, C. F., Tremblay, N., & Tremblay, G. (2010). Calibration and performance evaluation of soybean and spring wheat cultivars using the STICS crop model in eastern Canada. Field Crops Research, 117, 183-196.

Jia, H., Jiang, B., Wu, C., Lu, W., Hou, W., Sun, S., Yan, H., & Han, T. (2014). Maturity group classification and maturity locus genotyping of early-maturing soybean varieties from high-latitude cold regions. PLoS ONE, 9, e94139.

Jiang, B., Nan, H., Gao, Y., Tang, L., Yue, Y., Lu, S., Ma, L., Cao, D., Sun, S., Wang, J., Wu, C., Yuan, X., Hou, W., Kong, F., Han, T., & Liu, B. (2014). Allelic combinations of soybean maturity loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes. PLoS ONE, 9, e106042.

Karges, K., Bellingrath-Kimura, S. D., Watson, C. A., Stoddard, F. L., Halwani, M., & Reckling, M. (2022). Agro-economic prospects for expanding soybean production beyond its current northerly limit in Europe. European Journal of Agronomy, 133, 126415.

Karlsson, J. O., Parodi, A., Van Zanten, H. H. E., Hansson, P.-A., & Röös, E. (2021). Halting European Union soybean feed imports favours ruminants over pigs and poultry. Nature Food, 2, 38-46.

Kersebaum, K. C. (2007). Modelling nitrogen dynamics in soil-crop systems with HERMES. Nutrient Cycling in Agroecosystems, 77, 39-52.

Klaiss, M., Schmid, N., Betrix, C.-A., Baux, A., Charles, R., & Messmer, M. M. (2020). Organic soybean production in Switzerland. OCL-Oilseeds and Fats, Crops and Lipids, 27, 64.

Kothari, K., Battisti, R., Boote, K. J., Archontoulis, S. V., Confalone, A., Constantin, J., Cuadra, S. V., Debaeke, P., Faye, B., Grant, B., Hoogenboom, G., Jing, Q., Van der Laan, M., da Silva, F. A. M., Marin, F. R., Nehbandani, A., Nendel, C., Purcell, L. C., Qian, B., … Salmeron, M. (2022). Are soybean models ready for climate change food impact assessments? European Journal of Agronomy, 135, 126482.

Koti, S. K., Reddy, V. R., Kakani, G., Zhao, A. D., & Gao, W. (2007). Effects of carbon dioxide, temperature and ultraviolet-B radiation and their interactions on soybean (Glycine max L.) growth and development. Environmental and Experimental Botany, 60, 1-10.

Kühling, I., Hüsing, B., Bome, N., & Trautz, D. (2018). Soybeans in high latitudes: Effects of Bradyrhizobium inoculation in Northwest Germany and southern West Siberia. Organic Agriculture, 8, 159-171.

Kurasch, A. K., Han, V., Leiser, W. L., Vollmann, J., Schori, A., Bétrix, C.-A., Mayr, B., Winkler, J., Mechtler, K., Aper, J., Sudaric, A., Pejic, I., Sarcevic, H., Jeanson, P., Balko, C., Signor, M., Miceli, F., Strijk, P., Rietman, H., … Würschum, T. (2017). Identification of mega-environments in Europe and effect of allelic variation at maturity E loci on adaptation of European soybean. Plant, Cell & Environment, 40, 765-778.

Kurosaki, H., & Yumoto, S. (2003). Effects of low temperature and shading during flowering on the yield components in soybeans. Plant Production Science, 6, 17-23.

Lamichhane, J. R., Constantin, J., Schoving, C., Maury, P., Debaeke, P., Aubertot, J.-N., & Dürr, C. (2020). Analysis of soybean germination, emergence, and prediction of a possible northward establishment of the crop under climate change. European Journal of Agronomy, 113, 125972.

Li, Y., Yu, Z., Jin, J., Zhang, Q., Wang, G., Liu, C., Wu, J., Wang, C., & Liu, X. (2018). Impact of elevated CO2 on seed quality of soybean at the fresh edible and mature stages. Frontiers in Plant Science, 9, 1413.

Malone, R. W., Kersebaum, K. C., Kaspar, T. C., Ma, L., Jaynes, D. B., & Gillette, K. (2017). Winter rye as a cover crop reduces nitrate loss to subsurface drainage as simulated by HERMES. Agricultural Water Management, 184, 156-169.

Mandić, V., Bijelić, Z., Krnjaja, V., Simić, A., Ruzić-Muslić, D., Dragicević, V., & Petricević, V. (2017). The rainfall use efficiency and soybean grain yield under rainfed conditions in Vojvodina. Biotechnology in Animal Husbandry, 33, 475-486.

Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J. W., Rötter, R. P., Boote, K. J., Ruane, A. C., Thorburn, P. J., Cammarano, D., Hatfield, J. L., Rosenzweig, C., Aggarwal, P. K., Angulo, C., Basso, B., Bertuzzi, P., Biernath, C., Brisson, N., Challinor, A. J., … Wolf, J. (2015). Multimodel ensembles of wheat growth: Many models are better than one. Global Change Biology, 21, 911-925.

Mirschel, W., & Wenkel, K. O. (2007). Modelling soil-crop interactions with AGROSIM model family. In K. C. Kersebaum, J. M. Hecker, W. Mirschel, & M. Wegehenkel (Eds.), Modelling water and nutrient dynamics in soil crop systems (pp. 59-74). Springer.

Nahar, K., Hasanuzzaman, M., & Fujita, M. (2016). Heat stress responses and thermotolerance in soybean. In M. Miransari (Ed.), Abiotic and biotic stresses in soybean production (pp. 261-284). Academic Press.

Nendel, C., Berg, M., Kersebaum, K. C., Mirschel, W., Specka, X., Wegehenkel, M., Wenkel, K. O., & Wieland, R. (2011). The MONICA model: Testing predictability for crop growth, soil moisture and nitrogen dynamics. Ecological Modelling, 222, 1614-1625.

Notz, I., Topp, C. F. E., Schuler, J., Alves, S., Amthauer, L., Dauber, J., Haase, T., Hargreaves, P. R., Hennessy, M., Iantcheva, A., Jeanneret, P., Kay, S., Recknagel, J., Rittler, L., Vasiljević, M., Watson, C. A., & Reckling, M. (under revision). Transition to legume-supported farming in Europe through re-designing cropping systems. Agronomy for Sustainable Development, in press.

Ohnishi, S., Miyoshi, T., & Shirai, S. (2010). Low temperature stress at different flower developmental stages affects pollen development, pollination, and pod set in soybean. Environmental and Experimental Botany, 69, 56-62.

Ortel, C. C., Roberts, T. L., Hoegenauer, K. A., Purcell, L. C., Slaton, N. A., & Gbur, E. E. (2020). Soybean maturity group and planting date influence grain yield and nitrogen dynamics. Agrosystems, Geosciences and Environment, 3, e20077.

Pannecoucque, J., Goormachtigh, S., Ceusters, N., Bode, S., Boeckx, P., & Roldan-Ruiz, I. (2022). Soybean response and profitability upon inoculation and nitrogen fertilisation in Belgium. European Journal of Agronomy, 132, 126390.

Portmann, F. T., Siebert, S., & Doll, P. (2010). MIRCA2000-global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles, 24, Gb1011.

Puteh, A. B., ThuZar, M., Mondal, M. M. A., Abdullah, N. A. P. B., & Halim, M. R. A. (2013). Soybean [Glycine max (L.) Merrill] seed yield response to high temperature stress during reproductive growth stages. Australian Journal of Crop Science, 7, 1472-1479.

Ramankutty, N., Evan, A. T., Monfreda, C., & Foley, J. A. (2008). Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles, 22, GB1003.

Reckling, M., Albertsson, J., Vermue, A., Carlsson, G., Watson, C. A., Justes, E., Bergkvist, G., Jensen, E. S., & Topp, C. F. E. (2022). Diversification improves the performance of cereals in European cropping systems. Agronomy for Sustainable Development, 42, 118.

Reckling, M., Bergkvist, G., Watson, C. A., Stoddard, F. L., & Bachinger, J. (2020). Re-designing organic grain legume cropping systems using systems agronomy. European Journal of Agronomy, 112, 125951.

Reckling, M., Bergkvist, G., Watson, C. A., Stoddard, F. L., Zander, P. M., Walker, R. L., Pristeri, A., Toncea, I., & Bachinger, J. (2016). Trade-offs between economic and environmental impacts of introducing legumes into cropping systems. Frontiers in Plant Science, 7, 669.

Reckling, M., Döring, T. F., Bergkvist, G., Stoddard, F. L., Watson, C. A., Seddig, S., Chmielewski, F.-M., & Bachinger, J. (2018). Grain legume yields are as stable as other spring crops in long-term experiments across northern Europe. Agronomy for Sustainable Development, 38, 63.

Ritter, L., & Bykova, O. (2021). Sowing time for soybean. Legumes translated practice note. www.legumestranslated.eu

Robertson, M. J., & Carberry, P. S. (1998). Simulating growth and development of soybean in APSIM. Proceedings 10th Australian Soybean Conference, Brisbane.

Ruane, A. C., Goldberg, R., & Chryssanthacopoulos, J. (2015). Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agricultural and Forest Meteorology, 200, 233-248.

Ruane, A. C., & Mcdermid, S. P. (2017). Selection of a representative subset of global climate models that captures the profile of regional changes for integrated climate impacts assessment. Earth Perspectives, 4, 1.

Schlenker, W., & Roberts, M. J. (2009). Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proceedings of the National Academy of Sciences of the United States of America, 106, 15594-15598. https://doi.org/10.1073/pnas.0906865106

Schoving, C., Champolivier, L., Maury, P., & Debaeke, P. (2022). Combining multi-environmental trials and crop simulation to understand soybean response to early sowings under contrasting water conditions. European Journal of Agronomy, 133, 126439.

Schoving, C., Stöckle, C. O., Colombet, C., Champolivier, L., Debaeke, P., & Maury, P. (2020). Combining simple phenotyping and photothermal algorithm for the prediction of soybean phenology: Application to a range of common cultivars grown in Europe. Frontiers in Plant Science, 10, 1755.

Serafin-Andrzejewska, M., Helios, W., Jama-Rodzenska, A., Kozak, M., Kotecki, A., & Kuchar, L. (2021). Effect of sowing date on soybean development in South-Western Poland. Agriculture-Basel, 11(5), 413.

Siebert, L., & Tränkner-Benslimane, K. (2020). Value chain of soybeans in China and Germany. Summarized results of a study conducted by Li Yumei and an analysis of the German market and potential Sino-German cooperation. Sino-German Agricultural Centre.

Simon-Miquel, G., Reckling, M., Lampurlanés, J., Marquilles, A., & Bonilla, D. (2021). The potential of soybean to diversify highly productive irrigated Mediterranean cropping systems. LANDSCAPE 2021 - Diversity for Sustainable and Resilient Agriculture, Online Conference.

Sinclair, T. R., Neumaier, N., Farias, J. R. B., & Nepomuceno, A. L. (2005). Comparison of vegetative development in soybean cultivars for low-latitude environments. Field Crops Research, 92, 53-59.

Soares, J. C., Zimmermann, L., Zendonadi dos Santos, N., Muller, O., Pintado, M., & Vasconcelos, M. W. (2021). Genotypic variation in the response of soybean to elevated CO2. Plant-Environment Interactions, 2, 263-276.

Staniak, M., Czopek, K., Stępień-Warda, A., Kocira, A., & Przybyś, M. (2021). Cold stress during flowering alters plant structure, yield and seed quality of different soybean genotypes. Agronomy, 11, 2059.

Sun, H., Jia, Z., Cao, D., Jiang, B., Wu, C., Hou, W., & Han, T. (2011). GmFT2a, a soy-bean homolog of flowering locus T, is involved in flowering transition and maintenance. PLoS ONE, 6, e29238.

Tacarindua, C. R. P., Shiraiwa, T., Homma, K., Kumagai, E., & Sameshima, R. (2013). The effects of increased temperature on crop growth and yield of soybean grown in a temperature gradient chamber. Field Crops Research, 154, 74-81.

Tao, F. L., Rötter, R. P., Palosuo, T., Gregorio Hernández Díaz-Ambrona, C., Mínguez, M. I., Semenov, M. A., Kersebaum, K. C., Nendel, C., Specka, X., Hoffmann, H., Ewert, F., Dambreville, A., Martre, P., Rodríguez, L., Ruiz-Ramos, M., Gaiser, T., Höhn, J. G., Salo, T., Ferrise, R., … Schulman, A. H. (2018). Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Global Change Biology, 24, 1291-1307. https://doi.org/10.1111/gcb.14019

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93, 485-498.

Toleikiene, M., Slepetys, J., Sarunaite, L., Lazauskas, S., Deveikyte, I., & Kadziuliene, Z. (2021). Soybean development and productivity in response to organic management above the northern boundary of soybean distribution in Europe. Agronomy, 11, 214.

Trnka, M., Feng, S., Semenov, M. A., Olesen, J. E., Kersebaum, K. C., Rötter, R. P., Semerádová, D., Klem, K., Huang, W., Ruiz-Ramos, M., Hlavinka, P., Meitner, J., Balek, J., Havlík, P., & Büntgen, U. (2019). Mitigation efforts will not fully alleviate the increase in water scarcity occurrence probability in wheat-producing areas. Science Advances, 5, eaau2406.

Tsubokura, Y., Watanabe, S., Xia, Z., Kanamori, H., Yamagata, H., Kaga, A., & Harada, K. (2014). Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Annals of Botany, 113, 429-441. https://doi.org/10.1093/aob/mct269

US Regional Soybean Laboratory. (1946). Results of the cooperative uniform soybean test 1945: Part I north central states (Vol. 131). US Regional Soybean Laboratory Mimeograph.

US Regional Soybean Laboratory. (1953). Evaluation of soybean germplasm: A summary of data pertaining to soybean introductions of group I maturity (Vol. 168). US Regional Soybean Laboratory Mimeograph.

Wallach, D. P., Martre, P., Liu, B., Asseng, S., Ewert, F., Thorburn, P. J., Ittersum, M., Aggarwal, P. K., Ahmed, M., Basso, B., Biernath, C., Cammarano, D., Challinor, A. J., de Sanctis, G., Dumont, B., Eyshi Rezaei, E., Fereres, E., Fitzgerald, G. J., Gao, Y., … Zhang, Z. (2018). Multimodel ensembles improve predictions of crop-environment-management interactions. Global Change Biology, 24, 5072-5083.

Webber, H., Ewert, F., Olesen, J. E., Müller, C., Fronzek, S., Ruane, A. C., Bourgault, M., Martre, P., Ababaei, B., Bindi, M., Ferrise, R., Finger, R., Fodor, N., Gabaldón-Leal, C., Gaiser, T., Jabloun, M., Kersebaum, K.-C., Lizaso, J. I., Lorite, I. J., … Wallach, D. (2018). Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications, 9, 4249.

Willett, W., Rockström, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T., Tilman, D., DeClerck, F., Wood, A., Jonell, M., Clark, M., Gordon, L. J., Fanzo, J., Hawkes, C., Zurayk, R., Rivera, J. A., de Vries, W., Majele Sibanda, L., … Murray, C. J. L. (2019). Food in the Anthropocene: The Lancet Commission on healthy diets from sustainable food systems. The Lancet, 393, 447-492.

Willmott, C. J., Robeson, S. M., & Matsuura, K. (2012). A refined index of model performance. International Journal of Climatology, 32, 2088-2094.

Yamaguchi, N., Yamazaki, H., Ohnishi, S., Suzuki, C., Hagihara, S., Miyoshi, T., & Senda, M. (2014). Method for selection of soybeans tolerant to seed cracking under chilling temperatures. Breeding Science, 64, 103-108.

Yang, W. Y., Wu, T. T., Zhang, X. Y., Song, W. W., Xu, C. L., Sun, S., Hou, W. S., Jiang, B. J., Han, T. F., & Wu, C. X. (2019). Critical photoperiod measurement of soybean genotypes in different maturity groups. Crop Science, 59, 2055-2061.

Żarski, J., Kuśmierek-Tomaszewska, R., Dudek, S., Krokowski, M., & Kledzik, R. (2019). Identifying climatic risk to soybean cultivation in the transitional type of moderate climate in Central Poland. Journal of Central European Agriculture, 20, 143-156.

Zimmer, S., Messmer, M., Haase, T., Piepho, H. P., Mindermann, A., Schulz, H., Habekuß, A., Ordonf, F., Wilbois, P., & Heß, J. (2016). Effects of soybean variety and Bradyrhizobium strains on yield, protein content and biological nitrogen fixation under cool growing conditions in Germany. European Journal of Agronomy, 72, 38-46.

Zipper, S. C., Qiu, J. X., & Kucharik, C. J. (2016). Drought effects on US maize and soybean production: Spatiotemporal patterns and historical changes. Environmental Research Letters, 11, 094021.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...