Sensing of Organic Vapors with Plasmonic Distributed Bragg Reflectors

. 2025 May 07 ; 17 (18) : 27126-27135. [epub] 20250424

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40270121

In recent years, advancements in air quality monitoring have been driven by the development of various sensor technologies, each with distinct advantages and limitations. Among these, polymer-based Distributed Bragg Reflectors (DBRs) have garnered significant interest for use in cost-effective, portable colorimetric sensors for detecting volatile organic compounds (VOCs). However, a key challenge in the fabrication of polymer-based DBRs lies in achieving an adequate refractive index contrast between the individual polymer layers. In this work, we fabricate plasmonic DBR sensors by a combination of low-temperature plasma-based techniques with reduced environmental footprint, investigate their potential as VOC sensors, and propose an optical model that links the sensors' optical properties and microstructure. Plasmonic nanoparticles of silver (Ag) are synthesized by gas aggregation and embedded into thermally evaporated poly(lactic acid) (PLA) layers to create nanocomposites with an enhanced refractive index (∼2.0). A 6-bilayer plasmonic DBR sensor is then produced by alternating depositions of plain PLA and nanocomposite layers as low and high refractive index materials, respectively. The resulting DBR achieves a 77% reflectance at 570 nm. The potential use-case of such a DBR as a VOC sensor is highlighted by its optical response upon exposure to ethanol (a model VOC) vapors as well as other VOCs (water, propanol, acetone, hexane). In an ethanol atmosphere, swelling of the polymer layers occurs, resulting in a red-shift of the reflection peak to 640 nm and a change in the DBR color. We take advantage of a generalized Maxwell-Garnett approach to create an advanced model that accurately reproduces the DBR spectra and captures swelling and degradation by accounting for structural changes and the behavior of isolated and coalesced Ag NPs within individual layers. Despite a decrease in the sensing performance with the number of swelling cycles, these plasmonic DBRs offer a promising solution for low-cost real-time VOC sensing.

Zobrazit více v PubMed

Lova P. Selective Polymer Distributed Bragg Reflector Vapor Sensors. Polymers 2018, 10 (10), 1161.10.3390/polym10101161. PubMed DOI PMC

Palo E.; Daskalakis K. S. Prospects in Broadening the Application of Planar Solution-Based Distributed Bragg Reflectors. Adv. Mater. Interfaces 2023, 10 (19), 220220610.1002/admi.202202206. DOI

Lova P.; Manfredi G.; Comoretto D. Advances in Functional Solution Processed Planar 1D Photonic Crystals. Adv. Opt. Mater. 2018, 6 (24), 180073010.1002/adom.201800730. DOI

Escher A.; Alloisio M.; Cavallo D.; Dodero A.; Lova P. Beyond Labeling: Hybrid Planar Photonic Crystals for Anti-Tampering Detection of Amines. ACS Appl. Opt. Mater. 2024, 2 (4), 655–663. 10.1021/acsaom.4c00065. DOI

Kou D.; Ma W.; Zhang S.; Tang B. Copolymer-Based Photonic Crystal Sensor for Discriminative Detection of Liquid Benzene, Toluene, Ethylbenzene, and Xylene. ACS Appl. Polym. Mater. 2020, 2 (1), 2–11. 10.1021/acsapm.9b00580. DOI

Mönch W.; Dehnert J.; Jaufmann E.; Zappe H. Flory-Huggins Swelling of Polymer Bragg Mirrors. Appl. Phys. Lett. 2006, 89 (16), 164104.10.1063/1.2358811. DOI

Lova P.; Manfredi G.; Bastianini C.; Mennucci C.; Buatier De Mongeot F.; Servida A.; Comoretto D. Flory–Huggins Photonic Sensors for the Optical Assessment of Molecular Diffusion Coefficients in Polymers. ACS Appl. Mater. Interfaces 2019, 11 (18), 16872–16880. 10.1021/acsami.9b03946. PubMed DOI

Groh W.; Zimmermann A. What Is the Lowest Refractive Index of an Organic Polymer?. Macromolecules 1991, 24 (25), 6660–6663. 10.1021/ma00025a016. DOI

Martinu L.; Poitras D. Plasma Deposition of Optical Films and Coatings: A Review. J. Vac. Sci. Technol. Vac. Surf. Films 2000, 18 (6), 2619–2645. 10.1116/1.1314395. DOI

Tao P.; Li Y.; Rungta A.; Viswanath A.; Gao J.; Benicewicz B. C.; Siegel R. W.; Schadler L. S. TiO2 Nanocomposites with High Refractive Index and Transparency. J. Mater. Chem. 2011, 21 (46), 18623.10.1039/c1jm13093e. DOI

Nakayama N.; Hayashi T. Preparation and Characterization of TiO2 and Polymer Nanocomposite Films with High Refractive Index. J. Appl. Polym. Sci. 2007, 105 (6), 3662–3672. 10.1002/app.26451. DOI

Lü C.; Cui Z.; Li Z.; Yang B.; Shen J. High Refractive Index Thin Films of ZnS/Polythiourethane Nanocomposites. J. Mater. Chem. 2003, 13 (3), 526–530. 10.1039/b208850a. DOI

Lova P.; Manfredi G.; Boarino L.; Comite A.; Laus M.; Patrini M.; Marabelli F.; Soci C.; Comoretto D. Polymer Distributed Bragg Reflectors for Vapor Sensing. ACS Photonics 2015, 2 (4), 537–543. 10.1021/ph500461w. DOI

Lova P.; Manfredi G.; Boarino L.; Laus M.; Urbinati G.; Losco T.; Marabelli F.; Caratto V.; Ferretti M.; Castellano M.; Soci C.; Comoretto D. Hybrid ZnO:Polystyrene Nanocomposite for All-polymer Photonic Crystals. Phys. Status Solidi C 2015, 12 (1–2), 158–162. 10.1002/pssc.201400209. DOI

Schürmann U.; Takele H.; Zaporojtchenko V.; Faupel F. Optical and Electrical Properties of Polymer Metal Nanocomposites Prepared by Magnetron Co-Sputtering. Thin Solid Films 2006, 515 (2), 801–804. 10.1016/j.tsf.2005.12.249. DOI

Caseri W. Nanocomposites of Polymers and Metals or Semiconductors: Historical Background and Optical Properties. Macromol. Rapid Commun. 2000, 21 (11), 705–722. 10.1002/1521-3927(20000701)21:11<705::AID-MARC705>3.0.CO;2-3. DOI

Convertino A.; Capobianchi A.; Valentini A.; Cirillo E. N. M. A New Approach to Organic Solvent Detection: High-Reflectivity Bragg Reflectors Based on a Gold Nanoparticle/Teflon-like Composite Material. Adv. Mater. 2003, 15 (13), 1103–1105. 10.1002/adma.200304777. DOI

Convertino A.; Capobianchi A.; Valentini A.; Cirillo E. N. M. High Reflectivity Bragg Reflectors Based on a Gold Nanoparticle/Teflon-like Composite Material as a New Approach to Organic Solvent Detection. Sens. Actuators B Chem. 2004, 100 (1–2), 212–215. 10.1016/j.snb.2003.12.024. DOI

Convertino A.; Valentini A.; Cingolani R. Organic Multilayers as Distributed Bragg Reflectors. Appl. Phys. Lett. 1999, 75 (3), 322–324. 10.1063/1.124363. DOI

Sun Y.; Wang G.; Zhang T.; Liu C.; Wang J. Periodically Alternated Metallic/Dielectric Nanocomposites and Dielectric Films for the Fabrication of High-Efficiency Bragg Reflectors: A Case Study. Appl. Phys. Express 2020, 13 (7), 07200110.35848/1882-0786/ab93e8. DOI

Faupel F.; Zaporojtchenko V.; Greve H.; Schürmann U.; Chakravadhanula V. S. K.; Hanisch Ch.; Kulkarni A.; Gerber A.; Quandt E.; Podschun R. Deposition of Nanocomposites by Plasmas. Contrib. Plasma Phys. 2007, 47 (7), 537–544. 10.1002/ctpp.200710069. DOI

Dalacu D.; Martinu L. Spectroellipsometric Characterization of Plasma-Deposited Au/SiO2 Nanocomposite Films. J. Appl. Phys. 2000, 87 (1), 228–235. 10.1063/1.371849. DOI

Dalacu D.; Martinu L. Spectroellipsometric Characterization of Plasma-Deposited Au/Fluoropolymer Nanocomposite Films. J. Vac. Sci. Technol. Vac. Surf. Films 1999, 17 (3), 877–883. 10.1116/1.581659. DOI

Kochergin V.; Zaporojtchenko V.; Takele H.; Faupel F.; Föll H. Improved Effective Medium Approach: Application to Metal Nanocomposites. J. Appl. Phys. 2007, 101 (2), 02430210.1063/1.2424406. DOI

Martinů L. Optical Response of Composite Plasma Polymer/Metal Films in the Effective Medium Approach. Sol. Energy Mater. 1987, 15 (1), 21–35. 10.1016/0165-1633(87)90073-6. DOI

Etrich C.; Fahr S.; Hedayati M.; Faupel F.; Elbahri M.; Rockstuhl C. Effective Optical Properties of Plasmonic Nanocomposites. Materials 2014, 7 (2), 727–741. 10.3390/ma7020727. PubMed DOI PMC

Vieaud J.; Merchiers O.; Rajaoarivelo M.; Warenghem M.; Borensztein Y.; Ponsinet V.; Aradian A. Effective Medium Description of Plasmonic Couplings in Disordered Polymer and Gold Nanoparticle Composites. Thin Solid Films 2016, 603, 452–464. 10.1016/j.tsf.2016.02.022. DOI

Kratochvíl J.; Kuzminova A.; Kylián O.; Biederman H. Comparison of Magnetron Sputtering and Gas Aggregation Nanoparticle Source Used for Fabrication of Silver Nanoparticle Films. Surf. Coat. Technol. 2015, 275, 296–302. 10.1016/j.surfcoat.2015.05.003. DOI

Kousal J.; Krtouš Z.; Solař P.; Křivka I.; Krakovský I.. Plasma-Assisted Vapour Thermal Deposition with Continuous Material Feed, 2022; pp 261–266.

Krtouš Z.; Hanyková L.; Krakovský I.; Nikitin D.; Pleskunov P.; Kylián O.; Sedlaříková J.; Kousal J. Structure of Plasma (Re)Polymerized Polylactic Acid Films Fabricated by Plasma-Assisted Vapour Thermal Deposition. Materials 2021, 14 (2), 459.10.3390/ma14020459. PubMed DOI PMC

Krtouš Z.; Kousal J.; Sedlaříková J.; Kolářová Rašková Z.; Kučerová L.; Krakovský I.; Kučera J.; Ali-Ogly S.; Pleskunov P.; Choukourov A. Thin Films of Cross-Linked Polylactic Acid as Tailored Platforms for Controlled Drug Release. Surf. Coat. Technol. 2021, 421, 12740210.1016/j.surfcoat.2021.127402. DOI

Polonskyi O.; Solař P.; Kylián O.; Drábik M.; Artemenko A.; Kousal J.; Hanuš J.; Pešička J.; Matolínová I.; Kolíbalová E.; Slavínská D.; Biederman H. Nanocomposite Metal/Plasma Polymer Films Prepared by Means of Gas Aggregation Cluster Source. Thin Solid Films 2012, 520 (12), 4155–4162. 10.1016/j.tsf.2011.04.100. DOI

Kylián O.; Nikitin D.; Hanuš J.; Ali-Ogly S.; Pleskunov P.; Biederman H. Plasma-Assisted Gas-Phase Aggregation of Clusters for Functional Nanomaterials. J. Vac. Sci. Technol. A 2023, 41 (2), 02080210.1116/6.0002374. DOI

Heavens O. S. Optical Properties of Thin Films. Rep. Prog. Phys. 1960, 23 (1), 1–65. 10.1088/0034-4885/23/1/301. DOI

Linstrom P.NIST Chemistry WebBook; NIST Standard Reference Database 69; NIST, 1997.

Larouche S.; Martinu L. OpenFilters: Open-Source Software for the Design, Optimization, and Synthesis of Optical Filters. Appl. Opt. 2008, 47 (13), C219.10.1364/AO.47.00C219. PubMed DOI

Figueiredo N. M.; Cavaleiro A. Dielectric Properties of Shape-Distributed Ellipsoidal Particle Systems. Plasmonics 2020, 15 (2), 379–397. 10.1007/s11468-019-01051-3. DOI

Rakić A. D.; Djurišić A. B.; Elazar J. M.; Majewski M. L. Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices. Appl. Opt. 1998, 37 (22), 5271.10.1364/AO.37.005271. PubMed DOI

García De Abajo F. J. Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides. J. Phys. Chem. C 2008, 112 (46), 17983–17987. 10.1021/jp807345h. DOI

Huang Y.; Chen Y.; Wang L.-L.; Ringe E. Small Morphology Variations Effects on Plasmonic Nanoparticle Dimer Hotspots. J. Mater. Chem. C 2018, 6 (36), 9607–9614. 10.1039/C8TC03556C. DOI

Khlebtsov B.; Melnikov A.; Zharov V.; Khlebtsov N. Absorption and Scattering of Light by a Dimer of Metal Nanospheres: Comparison of Dipole and Multipole Approaches. Nanotechnology 2006, 17 (5), 1437–1445. 10.1088/0957-4484/17/5/045. DOI

Cai L.-H.; Panyukov S.; Rubinstein M. Hopping Diffusion of Nanoparticles in Polymer Matrices. Macromolecules 2015, 48 (3), 847–862. 10.1021/ma501608x. PubMed DOI PMC

Minnai C.; Milani P. Metal-Polymer Nanocomposite with Stable Plasmonic Tuning under Cyclic Strain Conditions. Appl. Phys. Lett. 2015, 107 (7), 07310610.1063/1.4928725. DOI

Hedayati M.; Faupel F.; Elbahri M. Review of Plasmonic Nanocomposite Metamaterial Absorber. Materials 2014, 7 (2), 1221–1248. 10.3390/ma7021221. PubMed DOI PMC

Keshavarz Hedayati M.; Elbahri M. Antireflective Coatings: Conventional Stacking Layers and Ultrathin Plasmonic Metasurfaces, A Mini-Review. Materials 2016, 9 (6), 497.10.3390/ma9060497. PubMed DOI PMC

Elbahri M.; Hedayati M. K.; Kiran Chakravadhanula V. S.; Jamali M.; Strunkus T.; Zaporojtchenko V.; Faupel F. An Omnidirectional Transparent Conducting-Metal-Based Plasmonic Nanocomposite. Adv. Mater. 2011, 23 (17), 1993–1997. 10.1002/adma.201003811. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...