Response of leaf internal CO2 concentration and intrinsic water-use efficiency in Norway spruce to century-long gradual CO2 elevation

. 2025 ; 63 (1) : 51-63. [epub] 20250313

Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40270907

The strategies of Norway spruce [Picea abies (L.) Karst.] to increasing atmospheric CO2 concentration (C a) are not entirely clear. Here, we reconstructed centennial trajectories of leaf internal CO2 concentration (C i) and intrinsic water-use efficiency (WUEi) from the amount of 13C in tree-ring cellulose. We collected 57 cores across elevations, soil, and atmospheric conditions in central Europe. Generally, WUEi and C i increased over the last 100 years and the C i/C a ratio remained almost constant. However, two groups were distinguished. The first group showed a quasi-linear response to C a and the sensitivity of C i to C a (s = dC i/dC a) ranged from 0 to 1. Trees in the second group showed nonmonotonic responses with extremes during the peak of industrial air pollution in the 1980s and s increase from -1 to +1.6. Our study shows a marked attenuation of the rise in WUEi during the 20th century leading to invariant WUEi in recent decades.

Zobrazit více v PubMed

Adams M.A., Buckley T.N., Turnbull T.L.: Diminishing CO2-driven gains in water-use efficiency of global forests. – Nat. Clim. Change 10: 466-471, 2020. 10.1038/s41558-020-0747-7 DOI

Ainsworth E.A., Long S.P.: What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. – New Phytol. 165: 351-371, 2005. 10.1111/j.1469-8137.2004.01224.x PubMed DOI

Ainsworth E.A., Rogers A.: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. – Plant Cell Environ. 30: 258-270, 2007. 10.1111/j.1365-3040.2007.01641.x PubMed DOI

Altman J., Fibich P., Santruckova H. et al..: Environmental factors exert strong control over the climate-growth relationships of Picea abies in Central Europe. – Sci. Total Environ. 609: 506-516, 2017. 10.1016/j.scitotenv.2017.07.134 PubMed DOI

Andreu-Hayles L., Planells O., Gutiérrez E. et al..: Long tree-ring chronologies reveal 20th century increases in water-use efficiency but no enhancement of tree growth at five Iberian pine forests. – Glob. Change Biol. 17: 2095-2112, 2011. 10.1111/j.1365-2486.2010.02373.x DOI

Arco Molina J.G., Saurer M., Altmanova N. et al..: Recent warming and increasing CO2 stimulate growth of dominant trees under no water limitation in South Korea. – Tree Physiol. 44: tpae 103, 2024. 10.1093/treephys/tpae103 PubMed DOI

Baillie M.G.L., Pilcher J.R.: A simple crossdating program for tree-ring research. – Tree-Ring Bull. 33: 7-14, 1973. http://hdl.handle.net/10150/260029

Betts R.A., Boucher O., Collins M. et al..: Projected increase in continental runoff due to plant responses to increasing carbon dioxide. – Nature 448: 1037-1041, 2007. 10.1038/nature06045 PubMed DOI

Boettger T., Haupt M., Friedrich M., Waterhouse J.S.: Reduced climate sensitivity of carbon, oxygen and hydrogen stable isotope ratios in tree-ring cellulose of silver fir (Abies alba Mill.) influenced by background SO2 in Franconia (Germany, Central Europe). – Environ. Pollut. 185: 281-294, 2014. 10.1016/j.envpol.2013.10.030 PubMed DOI

Brienen R.J.W., Gloor E., Clerici S. et al..: Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes. – Nat. Commun. 8: 288, 2017. 10.1038/s41467-017-00225-z PubMed DOI PMC

Brümmer C., Black T.A., Jassal R.S. et al..: How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. – Agr. Forest Meteorol. 153: 14-30, 2012. 10.1016/j.agrformet.2011.04.008 DOI

Buras A., van der Maaten-Theunissen M., van der Maaten E. et al..: Tuning the voices of a choir: detecting ecological gradients in time-series populations. – PLoS ONE 11: e0158346, 2016. 10.1371/journal.pone.0158346 PubMed DOI PMC

Čada V., Šantrůčková H., Šantrůček J. et al..: Complex physiological response of norway spruce to atmospheric pollution – decreased carbon isotope discrimination and unchanged tree biomass increment. – Front. Plant Sci. 7: 805, 2016. 10.3389/fpls.2016.00805 PubMed DOI PMC

Cavender-Bares J., Bazzaz F.A.: Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. – Oecologia 124: 8-18, 2000. 10.1007/PL00008865 PubMed DOI

Cernusak L.A.: Gas exchange and water-use efficiency in plant canopies. – Plant Biol. 22: 52-67, 2020. 10.1111/plb.12939 PubMed DOI

Cienciala E., Russ R., Šantrůčková H. et al..: Discerning environmental factors affecting current tree growth in Central Europe. – Sci. Total Environ. 573: 541-554, 2016. 10.1016/j.scitotenv.2016.08.115 PubMed DOI

Coumou D., Lehmann J., Beckmann J.: The weakening summer circulation in the Northern Hemisphere mid-latitudes. – Science 348: 324-327, 2015. 10.1126/science.1261768 PubMed DOI

Cowan I.R., Farquhar G.D.: Stomatal function in relation to leaf metabolism and environment. – In: Jennings D.H. (ed.): Integration of Activity in the Higher Plant. Pp. 471-505. The University Press, Cambridge: 1977. https://www.researchgate.net/publication/22384954_Stomatal_function_in_relation_to_leaf_metabolism_and_environment_Stomatal_function_in_the_regulation_of_gas_exchange#full-text PubMed

Drake B.G., Gonzalez-Meler M.A., Long S.P.: More efficient plants: A consequence of rising atmospheric CO2? – Annu. Rev. Plant Phys. 48: 609-639, 1997. 10.1146/annurev.arplant.48.1.609 PubMed DOI

Duffy J.E., McCarroll D., Barnes A. et al..: Short-lived juvenile effects observed in stable carbon and oxygen isotopes of UK oak trees and historic building timbers. – Chem. Geol. 472: 1-7, 2017. 10.1016/j.chemgeo.2017.09.007 DOI

Eckstein D., Bauch J.: Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. – Forstwiss. Centralbl. 88: 230-250, 1969. 10.1007/BF02741777 DOI

Farquhar G.D., Dubbe D.R., Raschke K.: Gain of feedback loop involving carbon dioxide and stomata: theory and measurement. – Plant Physiol. 62: 406-412, 1978. 10.1104/pp.62.3.406 PubMed DOI PMC

Farquhar G.D., Ehleringer J.R., Hubick K.T.: Carbon isotope discrimination and photosynthesis. – Annu. Rev. Plant Phys. 40: 503-537, 1989. 10.1146/annurev.pp.40.060189.002443 DOI

Farquhar G.D., OꞌLeary M.H., Berry J.A.: On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. – Aust. J. Plant Physiol. 9: 121-137, 1982. https://sci-hub.se/10.1071/pp9820121 DOI

Farquhar G.D., Sharkey T.D.: Stomatal conductance and photosynthesis. – Annu. Rev. Plant Biol. 33: 317-345, 1982. 10.1146/annurev.pp.33.060182.001533 DOI

Feng X.H.: Long-term ci/ca response of trees in western North America to atmospheric CO2 concentration derived from carbon isotope chronologies. – Oecologia 117: 19-25, 1998. 10.1007/s004420050626 PubMed DOI

Francey R.J., Allison C.E., Etheridge D.M. et al..: A 1000-year high precision record of δ13C in atmospheric CO2. – Tellus B 51: 170-193, 1999. 10.3402/tellusb.v51i2.16269 DOI

Francey R.J., Farquhar G.D.: An explanation of 13C/12C variations in tree rings. – Nature 297: 28-31, 1982. 10.1038/297028a0 DOI

Frank D.C., Poulter B., Saurer M. et al..: Water-use efficiency and transpiration across European forests during the Anthropocene. – Nat. Clim. Change 5: 579-583, 2015. 10.1038/nclimate2614 DOI

Franks P.J., Adams M.A., Amthor J.S. et al..: Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. – New Phytol. 197: 1077-1094, 2013. 10.1111/nph.12104 PubMed DOI

Fritts H.C.: Tree Rings and Climate. Pp. 567. Academic Press, New York: 1976.

Gagen M., Finsinger W., Wagner-Cremer F. et al..: Evidence of changing intrinsic water-use efficiency under rising atmospheric CO2 concentrations in Boreal Fennoscandia from subfossil leaves and tree ring delta 13C ratios. – Glob. Change Biol. 17: 1064-1072, 2011. 10.1111/j.1365-2486.2010.02273.x DOI

Gagen M., McCarroll D., Robertson I. et al..: Do tree ring δ13C series from Pinus sylvestris in northern Fennoscandia contain long-term non-climatic trends? – Chem. Geol. 252: 42-51, 2008. 10.1016/j.chemgeo.2008.01.013 DOI

Gärtner H., Nievergelt D.: The core-microtome: A new tool for surface preparation on cores and time series analysis of varying cell parameters. – Dendrochronologia 28: 85-92, 2010. 10.1016/j.dendro.2009.09.002 DOI

Gebauer G., Schulze E.-D.: Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, NE Bavaria. – Oecologia 87: 198-207, 1991. 10.1007/BF00325257 PubMed DOI

Gessler A., Ferrio J.P., Hommel R. et al..: Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. – Tree Physiol. 34: 796-818, 2014. 10.1093/treephys/tpu040 PubMed DOI

Guerrieri R., Mencuccini M., Sheppard L.J. et al..: The legacy of enhanced N and S deposition as revealed by the combined analysis of δ13C, δ18O and δ15N in tree rings. – Glob. Change Biol. 17: 1946-1962, 2011. 10.1111/j.1365-2486.2010.02362.x DOI

Hetherington A.M., Woodward F.I.: The role of stomata in sensing and driving environmental change. – Nature 424: 901-908, 2003. 10.1038/nature01843 PubMed DOI

Hoshika Y., Omasa K., Paoletti E.: Whole-tree water use efficiency is decreased by ambient ozone and not affected by O3-induced stomatal sluggishness. – PLoS ONE 7: e39270, 2012. 10.1371/journal.pone.0039270 PubMed DOI PMC

Jasechko S., Sharp Z.D., Gibson J.J. et al..: Terrestrial water fluxes dominated by transpiration. – Nature 496: 347-350, 2013. 10.1038/nature11983 PubMed DOI

Keeling C.D., Whorf T.P.: Atmospheric CO2 Records from Sites in the Scripps Institution of Oceanography (SIO) Air Sampling Network (1985–2007). CDIAC, ESS-DIVE repository 2004. Available at: https://data.ess-dive.lbl.gov/datasets/doi:10.3334/CDIAC/ATG.NDP001. DOI

Keenan T.F., Hollinger D.Y., Bohrer G. et al..: Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. – Nature 499: 324-327, 2013. 10.1038/nature12291 PubMed DOI

Keller K.M., Lienert S., Bozbiyik A. et al..: 20th century changes in carbon isotopes and water-use efficiency: tree-ring-based evaluation of the CLM4.5 and LPX-Bern models. – Biogeosciences 14: 2641-2673, 2017. 10.5194/bg-14-2641-2017 DOI

Köhler I.H., Macdonald A.J., Schnyder H.: Last-century increases in intrinsic water-use efficiency of grassland communities have occurred over a wide range of vegetation composition, nutrient inputs, and soil pH. – Plant Physiol. 170: 881-890, 2016. 10.1104/pp.15.01472 PubMed DOI PMC

Körner C.: Ecological impacts of atmospheric CO2 enrichment on terrestrial ecosystems. – Philos. T. Roy. Soc. A 361: 2023-2041, 2003. 10.1098/rsta.2003.1241 PubMed DOI

Körner C.: Plant CO2 responses: an issue of definition, time and resource supply. – New Phytol. 172: 393-411, 2006. 10.1111/j.1469-8137.2006.01886.x PubMed DOI

Lake J.A., Quick W.P., Beerling D.J., Woodward F.I.: Signals from mature to new leaves. – Nature 411: 154, 2001. 10.1038/35075660 PubMed DOI

Lake J.A., Woodward F.I.: Response of stomatal numbers to CO2 and humidity: control by transpiration rate and abscisic acid. – New Phytol. 179: 397-404, 2008. 10.1111/j.1469-8137.2008.02485.x PubMed DOI

Laumer W., Andreu L., Helle G. et al..: A novel approach for the homogenization of cellulose to use micro-amounts for stable isotope analyses. – Rapid Commun. Mass Sp. 23: 1934-1940, 2009. 10.1002/rcm.4105 PubMed DOI

Leuzinger S., Körner C.: Water savings in mature deciduous forest trees under elevated CO2. – Glob. Change Biol. 13: 2498-2508, 2007. 10.1111/j.1365-2486.2007.01467.x DOI

Loader N.J., McCarroll D., Gagen M. et al..: Extracting climatic information from stable isotopes in tree rings. – In: Dawson T.E., Siegwolf R.T.W. (ed.): Stable Isotopes as Indicators of Ecological Change. Pp. 27-48. Elsevier, Amsterdam-Boston-Tokyo: 2007. 10.1016/S1936-7961(07)01003-2 DOI

Loader N.J., Robertson I., Barker A.C. et al..: An improved technique for the batch processing of small wholewood samples to α-cellulose. – Chem. Geol. 136: 313-317, 1997. 10.1016/S0009-2541(96)00133-7 DOI

Maseyk K., Hemming D., Angert A. et al..: Increase in water-use efficiency and underlying processes in pine forests across a precipitation gradient in the dry Mediterranean region over the past 30 years. – Oecologia 167: 573-585, 2011. 10.1007/s00442-011-2010-4 PubMed DOI

McCarroll D., Gagen M.H., Loader N.J. et al..: Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. – Geochim. Cosmochim. Ac. 73: 1539-1547, 2009. 10.1016/j.gca.2008.11.041 DOI

McCarroll D., Loader N.J.: Stable isotopes in tree rings. – Quaternary Sci. Rev. 23: 771-801, 2004. 10.1016/j.quascirev.2003.06.017 DOI

Medlyn B.E., Barton C.V.M., Broadmeadow M.S.J. et al..: Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. – New Phytol. 149: 247-264, 2001. 10.1046/j.1469-8137.2001.00028.x PubMed DOI

Menezes-Silva P.E., Loram-Lourenço L., Alves R.D.F.B. et al..: Different ways to die in a changing world: Consequences of climate change for tree species performance and survival through an ecophysiological perspective. – Ecol. Evol. 9: 11979-11999, 2019. 10.1002/ece3.5663 PubMed DOI PMC

Millard P., Grelet G.A.: Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. – Tree Physiol. 30: 1083-1095, 2010. 10.1093/treephys/tpq042 PubMed DOI

Miller-Rushing A.J., Primack R.B., Templer P.H. et al..: Long-term relationships among atmospheric CO2, stomata, and intrinsic water use efficiency in individual trees. – Am. J. Bot. 96: 1779-1786, 2009. 10.3732/ajb.0800410 PubMed DOI

Novick K.A., Ficklin D.L., Grossiord C. et al..: The impacts of rising vapour pressure deficit in natural and managed ecosystems. – Plant Cell Environ. 47: 3561-3589, 2024. 10.1111/pce.14846 PubMed DOI

Oulehle F., Urban O., Tahovská K. et al..: Calcium availability affects the intrinsic water-use efficiency of temperate forest trees. – Commun. Earth Environ. 4: 199, 2023. 10.1038/s43247-023-00822-5 DOI

Peñuelas J., Canadell J.G., Ogaya R.: Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. – Global Ecol. Biogeogr. 20: 597-608, 2011. 10.1111/j.1466-8238.2010.00608.x DOI

Ponton S., Flanagan L.B., Alstad K.P. et al..: Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. – Glob. Change Biol. 12: 294-310, 2006. 10.1111/j.1365-2486.2005.01103.x DOI

Rennenberg H., Dannenmann M., Gessler A. et al..: Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. – Plant Biol. 11: 4-23, 2009. 10.1111/j.1438-8677.2009.00241.x PubMed DOI

Sage R.F.: Acclimation of photosynthesis to increasing atmospheric CO2: The gas-exchange perspective. – Photosynth. Res. 39: 351-368, 1994. 10.1007/BF00014591 PubMed DOI

Sala A., Piper F., Hoch G.: Physiological mechanisms of drought-induced tree mortality are far from being resolved. – New Phytol. 186: 274-281, 2010. 10.1111/j.1469-8137.2009.03167.x PubMed DOI

Santrucek J., Sage R.F.: Acclimation of stomatal conductance to a CO2-enriched atmosphere and elevated temperature in Chenopodium album. – Aust. J. Plant Physiol. 23: 467-478, 1996. 10.1071/PP9960467 DOI

Šantrůčková H., Cienciala E., Kaňa J., Kopáček J.: The chemical composition of forest soils and their degree of acidity in Central Europe. – Sci. Total Environ. 687: 96-103, 2019. 10.1016/j.scitotenv.2019.06.078 PubMed DOI

Šantrůčková H., Šantrůček J., Šetlík J. et al..: Carbon isotopes in tree rings of Norway spruce exposed to atmospheric pollution. – Environ. Sci. Technol. 41: 5778-5782, 2007. 10.1021/es070011t PubMed DOI

Saurer M., Siegwolf R.T.W., Schweingruber F.H.: Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. – Glob. Change Biol. 10: 2109-2120, 2004. 10.1111/j.1365-2486.2004.00869.x DOI

Saurer M., Spahni R., Frank D.C. et al..: Spatial variability and temporal trends in water-use efficiency of European forests. – Glob. Change Biol. 20: 3700-3712, 2014. 10.1111/gcb.12717 PubMed DOI

Schweingruber F.H.: Tree Rings and Environment: Dendroecology. Pp. 609. Paul Haupt, Bern: 1996.

Schymanski S.J., Or D.: Wind increases leaf water use efficiency. – Plant Cell Environ. 39: 1448-1459, 2016. 10.1111/pce.12700 PubMed DOI

Seibt U., Rajabi A., Griffiths H., Berry J.A.: Carbon isotopes and water use efficiency: sense and sensitivity. – Oecologia 155: 441-454, 2008. 10.1007/s00442-007-0932-7 PubMed DOI

Tumajer J., Altman J., Štěpánek P. et al..: Increasing moisture limitation of Norway spruce in Central Europe revealed by forward modelling of tree growth in tree-ring network. – Agr. Forest Meteorol. 247: 56-64, 2017. 10.1016/j.agrformet.2017.07.015 DOI

Venäläinen A., Lehtonen I., Laapas M. et al..: Climate change induces multiple risks to boreal forests and forestry in Finland: A literature review. – Glob. Change Biol. 26: 4178-4196, 2020. 10.1111/gcb.15183 PubMed DOI PMC

Vicente-Serrano S.M., Beguería S., López-Moreno J.I.: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. – J. Climate 23: 1696-1718, 2010. 10.1175/2009JCLI2909.1 DOI

Vico G., Manzoni S., Palmroth S. et al..: A perspective on optimal leaf stomatal conductance under CO2 and light co-limitations. – Agr. Forest Meteorol. 182-183: 191-199, 2013. 10.1016/j.agrformet.2013.07.005 DOI

Voelker S.L., Brooks J.R., Meinzer F.C. et al..: A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. – Glob. Change Biol. 22: 889-902, 2016. 10.1111/gcb.13102 PubMed DOI

Voelker S.L., Roden J.S., Dawson T.E.: Millennial-scale tree-ring isotope chronologies from coast redwoods provide insights on controls over California hydroclimate variability. – Oecologia 187: 897-909, 2018. 10.1007/s00442-018-4193-4 PubMed DOI

Waterhouse J.S., Switsur V.R., Barker A.C. et al..: Northern European trees show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations. – Quaternary Sci. Rev. 23: 803-810, 2004. 10.1016/j.quascirev.2003.06.011 DOI

Wong S.-C., Cowan I.R., Farquhar G.D.: Leaf conductance in relation to rate of CO2 assimilation. I. Influence of nitrogen nutrition, phosphorus nutrition, photon flux density, and ambient partial pressure of CO2 during ontogeny. – Plant Physiol. 78: 821-825, 1985. 10.1104/pp.78.4.821 PubMed DOI PMC

Yamaguchi D.K.: A simple method for cross-dating increment cores from living trees. – Can. J. Forest Res. 21: 414-416, 1991. 10.1139/x91-053 DOI

Yu G., Song X., Wang Q. et al..: Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. – New Phytol. 177: 927-937, 2008. 10.1111/j.1469-8137.2007.02316.x PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...