Response of leaf internal CO2 concentration and intrinsic water-use efficiency in Norway spruce to century-long gradual CO2 elevation
Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40270907
PubMed Central
PMC12012425
DOI
10.32615/ps.2025.006
PII: PS63051
Knihovny.cz E-zdroje
- Klíčová slova
- Picea abies, carbon dioxide enrichment, photosynthesis, stable carbon isotopes, tree rings, water-use efficiency,
- MeSH
- fotosyntéza MeSH
- listy rostlin * metabolismus fyziologie MeSH
- oxid uhličitý * metabolismus MeSH
- smrk * metabolismus fyziologie MeSH
- voda * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oxid uhličitý * MeSH
- voda * MeSH
The strategies of Norway spruce [Picea abies (L.) Karst.] to increasing atmospheric CO2 concentration (C a) are not entirely clear. Here, we reconstructed centennial trajectories of leaf internal CO2 concentration (C i) and intrinsic water-use efficiency (WUEi) from the amount of 13C in tree-ring cellulose. We collected 57 cores across elevations, soil, and atmospheric conditions in central Europe. Generally, WUEi and C i increased over the last 100 years and the C i/C a ratio remained almost constant. However, two groups were distinguished. The first group showed a quasi-linear response to C a and the sensitivity of C i to C a (s = dC i/dC a) ranged from 0 to 1. Trees in the second group showed nonmonotonic responses with extremes during the peak of industrial air pollution in the 1980s and s increase from -1 to +1.6. Our study shows a marked attenuation of the rise in WUEi during the 20th century leading to invariant WUEi in recent decades.
Faculty of Science University of South Bohemia Branišovská 31 370 05 České Budějovice Czech Republic
IFER Institute of Forest Ecosystem Research Čs armády 655 254 01 Jílové u Prahy Czech Republic
Institute of Botany AS CR Zámek 1 252 43 Průhonice Czech Republic
Zobrazit více v PubMed
Adams M.A., Buckley T.N., Turnbull T.L.: Diminishing CO2-driven gains in water-use efficiency of global forests. – Nat. Clim. Change 10: 466-471, 2020. 10.1038/s41558-020-0747-7 DOI
Ainsworth E.A., Long S.P.: What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. – New Phytol. 165: 351-371, 2005. 10.1111/j.1469-8137.2004.01224.x PubMed DOI
Ainsworth E.A., Rogers A.: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. – Plant Cell Environ. 30: 258-270, 2007. 10.1111/j.1365-3040.2007.01641.x PubMed DOI
Altman J., Fibich P., Santruckova H. et al..: Environmental factors exert strong control over the climate-growth relationships of Picea abies in Central Europe. – Sci. Total Environ. 609: 506-516, 2017. 10.1016/j.scitotenv.2017.07.134 PubMed DOI
Andreu-Hayles L., Planells O., Gutiérrez E. et al..: Long tree-ring chronologies reveal 20th century increases in water-use efficiency but no enhancement of tree growth at five Iberian pine forests. – Glob. Change Biol. 17: 2095-2112, 2011. 10.1111/j.1365-2486.2010.02373.x DOI
Arco Molina J.G., Saurer M., Altmanova N. et al..: Recent warming and increasing CO2 stimulate growth of dominant trees under no water limitation in South Korea. – Tree Physiol. 44: tpae 103, 2024. 10.1093/treephys/tpae103 PubMed DOI
Baillie M.G.L., Pilcher J.R.: A simple crossdating program for tree-ring research. – Tree-Ring Bull. 33: 7-14, 1973. http://hdl.handle.net/10150/260029
Betts R.A., Boucher O., Collins M. et al..: Projected increase in continental runoff due to plant responses to increasing carbon dioxide. – Nature 448: 1037-1041, 2007. 10.1038/nature06045 PubMed DOI
Boettger T., Haupt M., Friedrich M., Waterhouse J.S.: Reduced climate sensitivity of carbon, oxygen and hydrogen stable isotope ratios in tree-ring cellulose of silver fir (Abies alba Mill.) influenced by background SO2 in Franconia (Germany, Central Europe). – Environ. Pollut. 185: 281-294, 2014. 10.1016/j.envpol.2013.10.030 PubMed DOI
Brienen R.J.W., Gloor E., Clerici S. et al..: Tree height strongly affects estimates of water-use efficiency responses to climate and CO2 using isotopes. – Nat. Commun. 8: 288, 2017. 10.1038/s41467-017-00225-z PubMed DOI PMC
Brümmer C., Black T.A., Jassal R.S. et al..: How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. – Agr. Forest Meteorol. 153: 14-30, 2012. 10.1016/j.agrformet.2011.04.008 DOI
Buras A., van der Maaten-Theunissen M., van der Maaten E. et al..: Tuning the voices of a choir: detecting ecological gradients in time-series populations. – PLoS ONE 11: e0158346, 2016. 10.1371/journal.pone.0158346 PubMed DOI PMC
Čada V., Šantrůčková H., Šantrůček J. et al..: Complex physiological response of norway spruce to atmospheric pollution – decreased carbon isotope discrimination and unchanged tree biomass increment. – Front. Plant Sci. 7: 805, 2016. 10.3389/fpls.2016.00805 PubMed DOI PMC
Cavender-Bares J., Bazzaz F.A.: Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. – Oecologia 124: 8-18, 2000. 10.1007/PL00008865 PubMed DOI
Cernusak L.A.: Gas exchange and water-use efficiency in plant canopies. – Plant Biol. 22: 52-67, 2020. 10.1111/plb.12939 PubMed DOI
Cienciala E., Russ R., Šantrůčková H. et al..: Discerning environmental factors affecting current tree growth in Central Europe. – Sci. Total Environ. 573: 541-554, 2016. 10.1016/j.scitotenv.2016.08.115 PubMed DOI
Coumou D., Lehmann J., Beckmann J.: The weakening summer circulation in the Northern Hemisphere mid-latitudes. – Science 348: 324-327, 2015. 10.1126/science.1261768 PubMed DOI
Cowan I.R., Farquhar G.D.: Stomatal function in relation to leaf metabolism and environment. – In: Jennings D.H. (ed.): Integration of Activity in the Higher Plant. Pp. 471-505. The University Press, Cambridge: 1977. https://www.researchgate.net/publication/22384954_Stomatal_function_in_relation_to_leaf_metabolism_and_environment_Stomatal_function_in_the_regulation_of_gas_exchange#full-text PubMed
Drake B.G., Gonzalez-Meler M.A., Long S.P.: More efficient plants: A consequence of rising atmospheric CO2? – Annu. Rev. Plant Phys. 48: 609-639, 1997. 10.1146/annurev.arplant.48.1.609 PubMed DOI
Duffy J.E., McCarroll D., Barnes A. et al..: Short-lived juvenile effects observed in stable carbon and oxygen isotopes of UK oak trees and historic building timbers. – Chem. Geol. 472: 1-7, 2017. 10.1016/j.chemgeo.2017.09.007 DOI
Eckstein D., Bauch J.: Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. – Forstwiss. Centralbl. 88: 230-250, 1969. 10.1007/BF02741777 DOI
Farquhar G.D., Dubbe D.R., Raschke K.: Gain of feedback loop involving carbon dioxide and stomata: theory and measurement. – Plant Physiol. 62: 406-412, 1978. 10.1104/pp.62.3.406 PubMed DOI PMC
Farquhar G.D., Ehleringer J.R., Hubick K.T.: Carbon isotope discrimination and photosynthesis. – Annu. Rev. Plant Phys. 40: 503-537, 1989. 10.1146/annurev.pp.40.060189.002443 DOI
Farquhar G.D., OꞌLeary M.H., Berry J.A.: On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. – Aust. J. Plant Physiol. 9: 121-137, 1982. https://sci-hub.se/10.1071/pp9820121 DOI
Farquhar G.D., Sharkey T.D.: Stomatal conductance and photosynthesis. – Annu. Rev. Plant Biol. 33: 317-345, 1982. 10.1146/annurev.pp.33.060182.001533 DOI
Feng X.H.: Long-term ci/ca response of trees in western North America to atmospheric CO2 concentration derived from carbon isotope chronologies. – Oecologia 117: 19-25, 1998. 10.1007/s004420050626 PubMed DOI
Francey R.J., Allison C.E., Etheridge D.M. et al..: A 1000-year high precision record of δ13C in atmospheric CO2. – Tellus B 51: 170-193, 1999. 10.3402/tellusb.v51i2.16269 DOI
Francey R.J., Farquhar G.D.: An explanation of 13C/12C variations in tree rings. – Nature 297: 28-31, 1982. 10.1038/297028a0 DOI
Frank D.C., Poulter B., Saurer M. et al..: Water-use efficiency and transpiration across European forests during the Anthropocene. – Nat. Clim. Change 5: 579-583, 2015. 10.1038/nclimate2614 DOI
Franks P.J., Adams M.A., Amthor J.S. et al..: Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. – New Phytol. 197: 1077-1094, 2013. 10.1111/nph.12104 PubMed DOI
Fritts H.C.: Tree Rings and Climate. Pp. 567. Academic Press, New York: 1976.
Gagen M., Finsinger W., Wagner-Cremer F. et al..: Evidence of changing intrinsic water-use efficiency under rising atmospheric CO2 concentrations in Boreal Fennoscandia from subfossil leaves and tree ring delta 13C ratios. – Glob. Change Biol. 17: 1064-1072, 2011. 10.1111/j.1365-2486.2010.02273.x DOI
Gagen M., McCarroll D., Robertson I. et al..: Do tree ring δ13C series from Pinus sylvestris in northern Fennoscandia contain long-term non-climatic trends? – Chem. Geol. 252: 42-51, 2008. 10.1016/j.chemgeo.2008.01.013 DOI
Gärtner H., Nievergelt D.: The core-microtome: A new tool for surface preparation on cores and time series analysis of varying cell parameters. – Dendrochronologia 28: 85-92, 2010. 10.1016/j.dendro.2009.09.002 DOI
Gebauer G., Schulze E.-D.: Carbon and nitrogen isotope ratios in different compartments of a healthy and a declining Picea abies forest in the Fichtelgebirge, NE Bavaria. – Oecologia 87: 198-207, 1991. 10.1007/BF00325257 PubMed DOI
Gessler A., Ferrio J.P., Hommel R. et al..: Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. – Tree Physiol. 34: 796-818, 2014. 10.1093/treephys/tpu040 PubMed DOI
Guerrieri R., Mencuccini M., Sheppard L.J. et al..: The legacy of enhanced N and S deposition as revealed by the combined analysis of δ13C, δ18O and δ15N in tree rings. – Glob. Change Biol. 17: 1946-1962, 2011. 10.1111/j.1365-2486.2010.02362.x DOI
Hetherington A.M., Woodward F.I.: The role of stomata in sensing and driving environmental change. – Nature 424: 901-908, 2003. 10.1038/nature01843 PubMed DOI
Hoshika Y., Omasa K., Paoletti E.: Whole-tree water use efficiency is decreased by ambient ozone and not affected by O3-induced stomatal sluggishness. – PLoS ONE 7: e39270, 2012. 10.1371/journal.pone.0039270 PubMed DOI PMC
Jasechko S., Sharp Z.D., Gibson J.J. et al..: Terrestrial water fluxes dominated by transpiration. – Nature 496: 347-350, 2013. 10.1038/nature11983 PubMed DOI
Keeling C.D., Whorf T.P.: Atmospheric CO2 Records from Sites in the Scripps Institution of Oceanography (SIO) Air Sampling Network (1985–2007). CDIAC, ESS-DIVE repository 2004. Available at: https://data.ess-dive.lbl.gov/datasets/doi:10.3334/CDIAC/ATG.NDP001. DOI
Keenan T.F., Hollinger D.Y., Bohrer G. et al..: Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. – Nature 499: 324-327, 2013. 10.1038/nature12291 PubMed DOI
Keller K.M., Lienert S., Bozbiyik A. et al..: 20th century changes in carbon isotopes and water-use efficiency: tree-ring-based evaluation of the CLM4.5 and LPX-Bern models. – Biogeosciences 14: 2641-2673, 2017. 10.5194/bg-14-2641-2017 DOI
Köhler I.H., Macdonald A.J., Schnyder H.: Last-century increases in intrinsic water-use efficiency of grassland communities have occurred over a wide range of vegetation composition, nutrient inputs, and soil pH. – Plant Physiol. 170: 881-890, 2016. 10.1104/pp.15.01472 PubMed DOI PMC
Körner C.: Ecological impacts of atmospheric CO2 enrichment on terrestrial ecosystems. – Philos. T. Roy. Soc. A 361: 2023-2041, 2003. 10.1098/rsta.2003.1241 PubMed DOI
Körner C.: Plant CO2 responses: an issue of definition, time and resource supply. – New Phytol. 172: 393-411, 2006. 10.1111/j.1469-8137.2006.01886.x PubMed DOI
Lake J.A., Quick W.P., Beerling D.J., Woodward F.I.: Signals from mature to new leaves. – Nature 411: 154, 2001. 10.1038/35075660 PubMed DOI
Lake J.A., Woodward F.I.: Response of stomatal numbers to CO2 and humidity: control by transpiration rate and abscisic acid. – New Phytol. 179: 397-404, 2008. 10.1111/j.1469-8137.2008.02485.x PubMed DOI
Laumer W., Andreu L., Helle G. et al..: A novel approach for the homogenization of cellulose to use micro-amounts for stable isotope analyses. – Rapid Commun. Mass Sp. 23: 1934-1940, 2009. 10.1002/rcm.4105 PubMed DOI
Leuzinger S., Körner C.: Water savings in mature deciduous forest trees under elevated CO2. – Glob. Change Biol. 13: 2498-2508, 2007. 10.1111/j.1365-2486.2007.01467.x DOI
Loader N.J., McCarroll D., Gagen M. et al..: Extracting climatic information from stable isotopes in tree rings. – In: Dawson T.E., Siegwolf R.T.W. (ed.): Stable Isotopes as Indicators of Ecological Change. Pp. 27-48. Elsevier, Amsterdam-Boston-Tokyo: 2007. 10.1016/S1936-7961(07)01003-2 DOI
Loader N.J., Robertson I., Barker A.C. et al..: An improved technique for the batch processing of small wholewood samples to α-cellulose. – Chem. Geol. 136: 313-317, 1997. 10.1016/S0009-2541(96)00133-7 DOI
Maseyk K., Hemming D., Angert A. et al..: Increase in water-use efficiency and underlying processes in pine forests across a precipitation gradient in the dry Mediterranean region over the past 30 years. – Oecologia 167: 573-585, 2011. 10.1007/s00442-011-2010-4 PubMed DOI
McCarroll D., Gagen M.H., Loader N.J. et al..: Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. – Geochim. Cosmochim. Ac. 73: 1539-1547, 2009. 10.1016/j.gca.2008.11.041 DOI
McCarroll D., Loader N.J.: Stable isotopes in tree rings. – Quaternary Sci. Rev. 23: 771-801, 2004. 10.1016/j.quascirev.2003.06.017 DOI
Medlyn B.E., Barton C.V.M., Broadmeadow M.S.J. et al..: Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. – New Phytol. 149: 247-264, 2001. 10.1046/j.1469-8137.2001.00028.x PubMed DOI
Menezes-Silva P.E., Loram-Lourenço L., Alves R.D.F.B. et al..: Different ways to die in a changing world: Consequences of climate change for tree species performance and survival through an ecophysiological perspective. – Ecol. Evol. 9: 11979-11999, 2019. 10.1002/ece3.5663 PubMed DOI PMC
Millard P., Grelet G.A.: Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. – Tree Physiol. 30: 1083-1095, 2010. 10.1093/treephys/tpq042 PubMed DOI
Miller-Rushing A.J., Primack R.B., Templer P.H. et al..: Long-term relationships among atmospheric CO2, stomata, and intrinsic water use efficiency in individual trees. – Am. J. Bot. 96: 1779-1786, 2009. 10.3732/ajb.0800410 PubMed DOI
Novick K.A., Ficklin D.L., Grossiord C. et al..: The impacts of rising vapour pressure deficit in natural and managed ecosystems. – Plant Cell Environ. 47: 3561-3589, 2024. 10.1111/pce.14846 PubMed DOI
Oulehle F., Urban O., Tahovská K. et al..: Calcium availability affects the intrinsic water-use efficiency of temperate forest trees. – Commun. Earth Environ. 4: 199, 2023. 10.1038/s43247-023-00822-5 DOI
Peñuelas J., Canadell J.G., Ogaya R.: Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. – Global Ecol. Biogeogr. 20: 597-608, 2011. 10.1111/j.1466-8238.2010.00608.x DOI
Ponton S., Flanagan L.B., Alstad K.P. et al..: Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. – Glob. Change Biol. 12: 294-310, 2006. 10.1111/j.1365-2486.2005.01103.x DOI
Rennenberg H., Dannenmann M., Gessler A. et al..: Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. – Plant Biol. 11: 4-23, 2009. 10.1111/j.1438-8677.2009.00241.x PubMed DOI
Sage R.F.: Acclimation of photosynthesis to increasing atmospheric CO2: The gas-exchange perspective. – Photosynth. Res. 39: 351-368, 1994. 10.1007/BF00014591 PubMed DOI
Sala A., Piper F., Hoch G.: Physiological mechanisms of drought-induced tree mortality are far from being resolved. – New Phytol. 186: 274-281, 2010. 10.1111/j.1469-8137.2009.03167.x PubMed DOI
Santrucek J., Sage R.F.: Acclimation of stomatal conductance to a CO2-enriched atmosphere and elevated temperature in Chenopodium album. – Aust. J. Plant Physiol. 23: 467-478, 1996. 10.1071/PP9960467 DOI
Šantrůčková H., Cienciala E., Kaňa J., Kopáček J.: The chemical composition of forest soils and their degree of acidity in Central Europe. – Sci. Total Environ. 687: 96-103, 2019. 10.1016/j.scitotenv.2019.06.078 PubMed DOI
Šantrůčková H., Šantrůček J., Šetlík J. et al..: Carbon isotopes in tree rings of Norway spruce exposed to atmospheric pollution. – Environ. Sci. Technol. 41: 5778-5782, 2007. 10.1021/es070011t PubMed DOI
Saurer M., Siegwolf R.T.W., Schweingruber F.H.: Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. – Glob. Change Biol. 10: 2109-2120, 2004. 10.1111/j.1365-2486.2004.00869.x DOI
Saurer M., Spahni R., Frank D.C. et al..: Spatial variability and temporal trends in water-use efficiency of European forests. – Glob. Change Biol. 20: 3700-3712, 2014. 10.1111/gcb.12717 PubMed DOI
Schweingruber F.H.: Tree Rings and Environment: Dendroecology. Pp. 609. Paul Haupt, Bern: 1996.
Schymanski S.J., Or D.: Wind increases leaf water use efficiency. – Plant Cell Environ. 39: 1448-1459, 2016. 10.1111/pce.12700 PubMed DOI
Seibt U., Rajabi A., Griffiths H., Berry J.A.: Carbon isotopes and water use efficiency: sense and sensitivity. – Oecologia 155: 441-454, 2008. 10.1007/s00442-007-0932-7 PubMed DOI
Tumajer J., Altman J., Štěpánek P. et al..: Increasing moisture limitation of Norway spruce in Central Europe revealed by forward modelling of tree growth in tree-ring network. – Agr. Forest Meteorol. 247: 56-64, 2017. 10.1016/j.agrformet.2017.07.015 DOI
Venäläinen A., Lehtonen I., Laapas M. et al..: Climate change induces multiple risks to boreal forests and forestry in Finland: A literature review. – Glob. Change Biol. 26: 4178-4196, 2020. 10.1111/gcb.15183 PubMed DOI PMC
Vicente-Serrano S.M., Beguería S., López-Moreno J.I.: A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. – J. Climate 23: 1696-1718, 2010. 10.1175/2009JCLI2909.1 DOI
Vico G., Manzoni S., Palmroth S. et al..: A perspective on optimal leaf stomatal conductance under CO2 and light co-limitations. – Agr. Forest Meteorol. 182-183: 191-199, 2013. 10.1016/j.agrformet.2013.07.005 DOI
Voelker S.L., Brooks J.R., Meinzer F.C. et al..: A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. – Glob. Change Biol. 22: 889-902, 2016. 10.1111/gcb.13102 PubMed DOI
Voelker S.L., Roden J.S., Dawson T.E.: Millennial-scale tree-ring isotope chronologies from coast redwoods provide insights on controls over California hydroclimate variability. – Oecologia 187: 897-909, 2018. 10.1007/s00442-018-4193-4 PubMed DOI
Waterhouse J.S., Switsur V.R., Barker A.C. et al..: Northern European trees show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations. – Quaternary Sci. Rev. 23: 803-810, 2004. 10.1016/j.quascirev.2003.06.011 DOI
Wong S.-C., Cowan I.R., Farquhar G.D.: Leaf conductance in relation to rate of CO2 assimilation. I. Influence of nitrogen nutrition, phosphorus nutrition, photon flux density, and ambient partial pressure of CO2 during ontogeny. – Plant Physiol. 78: 821-825, 1985. 10.1104/pp.78.4.821 PubMed DOI PMC
Yamaguchi D.K.: A simple method for cross-dating increment cores from living trees. – Can. J. Forest Res. 21: 414-416, 1991. 10.1139/x91-053 DOI
Yu G., Song X., Wang Q. et al..: Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. – New Phytol. 177: 927-937, 2008. 10.1111/j.1469-8137.2007.02316.x PubMed DOI