Human costal cartilage, tooth cavities, and femur nutrient canals-new niches for insects used in forensic entomology

. 2025 Jun ; 10 (2) : owae028. [epub] 20240423

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40271218

UNLABELLED: The study aimed to analyze the entomological material collected during 13 autopsies performed on the unidentified cadavers revealed at different stages of decay in the Upper Silesia Region (Poland) over 2016-2022. During the preparation of human tissues for genetic identification, we revealed larvae, puparia, and adult insects in previously undescribed locations: costal cartilage, femur nutrient canals (foramen nutrients), and tooth cavities. The taxonomical assessment was done using morphological examination or DNA barcoding, where necessary. Based on our observations, we conclude that the apical constriction, foramen, and cavities may serve as migration paths inside teeth, and the femur nutrient canals to the bone marrow. The study also revealed that the beetle Necrobia ruficollis (Fabricius, 1775) and the moth family Pyralidae Latreille, 1802 (Phycitinae) moths can form pupal chambers inside the costal cartilage, indicating that these insects can complete their life cycle inside this cache. We believe that the newly reported locations of carrion insects in human remains may be relevant to forensic entomology, as they provide new opportunities to collect insect evidence. KEY POINTS: Costal cartilage may serve as an occasional cache for adults and immatures of carrion insects.Tooth cavities and apical foramen may serve as entryways for necrophilous insect larvae.Insect larvae use nutrient canals as migratory pathways to the bone marrow.

Zobrazit více v PubMed

Amendt  J, Campobasso  CP, Gaudry  E, et al.  European Association for Forensic Entomology. Best practice in forensic entomology—standards and guidelines. Int J Leg Med. 2007;121:90–104. PubMed

Márquez-Grant  N, Roberts  J. Forensic ecology handbook: from crime scene to court. Chichester (UK): John Wiley & Sons, Ltd.; 2012.

Skowronek  R, Tomsia  M, Szpila  K, et al.  The presence of Diptera larvae in human bones. Forensic Sci Int Gen Suppl Ser. 2015;5:e235–e237.

Becker  J, Mahlke  NS, Ritz-Timme  S, et al.  The human intervertebral disc as a source of DNA for molecular identification. Forensic Sci Med Pathol. 2021;17:660–664. PubMed PMC

Tomsia  M, Droździok  K, Banaszek  P, et al.  The intervertebral discs' fibrocartilage as a DNA source for genetic identification in severely charred cadavers. Forensic Sci Med Pathol. 2022;18:442–449. PubMed PMC

Tomsia  M, Droździok  K, Javan  G, et al.  Costal cartilage ensures low degradation of DNA needed for genetic identification of human remains retrieved at different decomposition stages and different postmortem intervals. Post Hig Med Dosw. 2021;75:852–858.

Freire-Aradas  A, Tomsia  M, Piniewska-Róg  D, et al.  Development of an epigenetic age predictor for costal cartilage with a simultaneous somatic tissue differentiation system. Forensic Sci Int Genet.  2023;67:102936. PubMed

Jung  JY, So  MH, Jeong  KS, et al.  Epigenetic age prediction using costal cartilage for the investigation of disaster victims and missing persons. J Forensic Sci. 2024;1–9. PubMed

Powers  RH. The decomposition of human remains. In: Rich  J, Dean  DE, Powers  RH, editors. Forensic medicine of the lower extremity. Totowa (NJ): The Humana Press Inc.; 2005. p. 3–15.

Tomsia  M, Cieśla  J, Pilch-Kowalczyk  J, et al.  Cartilage tissue in forensic science—state of the art and future research directions. Processes. 2022;10:2456.

Tomsia  M, Nowicka  J, Skowronek  R, et al.  A comparative study of ethanol concentration in costal cartilage in relation to blood and urine. Processes. 2020;8:1637.

Tomsia  M, Głaz  M, Nowicka  J, et al.  Sodium nitrite detection in costal cartilage and vitreous humor—case report of fatal poisoning with sodium nitrite. J Forensic Leg Med. 2021;81:102186. PubMed

Tomsia  M, Chełmecka  E, Głaz  M, et al.  Epiglottis cartilage, costal cartilage, and intervertebral disc cartilage as alternative materials in the postmortem diagnosis of methanol poisoning. Toxics. 2023;11:152. PubMed PMC

Westen  AA, Gerretsen  RR, Maat  GJ. Femur, rib, and tooth sample collection for DNA analysis in disaster victim identification (DVI): a method to minimize contamination risk. Forensic Sci Med Pathol. 2008;4:15–21. PubMed

Rennick  SL, Fenton  TW, Foran  DR. The effects of skeletal preparation techniques on DNA from human and non-human bone. J Forensic Sci. 2005;50:1016–1019. PubMed

Senst  A, Caliebe  A, Drum  M, et al.  Recommendations for the successful identification of altered human remains using standard and emerging technologies: results of a systematic approach. Forensic Sci Int Genet. 2023;62:102790, 1–14. PubMed

Siriboonpiputtana  T, Rinthachai  T, Shotivaranon  J, et al.  Forensic genetic analysis of bone remain samples. Forensic Sci Int. 2018;284:167–175. PubMed

Presecki  Z, Brkić  H, Primorac  D, et al.  Methods of preparing the tooth for DNA isolation. Acta Stomatol Croat. 2000;34:21–24.

Hughes-Stamm  S, Warnke  F, van  Daal  A. An alternate method for extracting DNA from environmentally challenged teeth for improved DNA analysis. Leg Med (Tokyo). 2016;18:31–36. PubMed

Ortiz-Herrero  L, Uribe  B, Armas  LH, et al.  Estimation of the post-mortem interval of human skeletal remains using Raman spectroscopy and chemometrics. Forensic Sci Int. 2021;329:111087, 1–9. PubMed

Megyesi  MS, Nawrocki  SP, Haskell  NH. Using accumulated degree-days to estimate the postmortem interval from decomposed human remains. J Forensic Sci. 2005;50:1–9. PubMed

Klausnitzer  B. Die Larven der Käfer Mitteleuropas. Heidelberg, Berlin: Spektrum Akademisher Verlag, 1991–2001. German.

Keys for the Identification of Polish Insects, Polish Entomological Society, 1955–2008. Polish.

Szpila  K.  Key for the identification of third instars of European blowflies (Diptera: Calliphoridae) of forensic importance. In: Amendt  J, Campobasso  CP, Goff  ML, et al., editors.  Current concepts in forensic entomology. Dordrecht (the Netherlands): Springer; 2010. p.43–56.

Fremdt  H, Szpila  K, Huijbregts  H, et al.  Lucilia silvarum Meigen, 1826 (Diptera: Calliphoridae)—a new species of interest for forensic entomology in Europe. Forensic Sci Int. 2012;222:335–339. PubMed

Martín-Vega  D, Díaz-Aranda  LM, Baz  A. The immature stages of the necrophagous fly Liopiophila varipes and consideration on the genus Liopiophila (Diptera: Piophilidae). Dtsc Entomol Z. 2014;61:37–42.

Kirinoki  M, Hitosugi  M, Kato-Hayashi  N, et al.  Discovery of Liopiophila varipes and Protopiophila contecta (Diptera: Piophilidae) from human cadavers. Forensic Sci Int. 2015;248:e8–e12. PubMed

Gregor  F, Rozkošný  R, Barták  M, et al.  The Muscidae (Diptera) of Central Europe. Folia Fac Sci Nat Univ Masaryk Brno Biol. 2002;107:1–280. Brno (Czech Republic): Masaryk University; 2002.

Grzywacz  A, Jarmusz  M, Walczak  K, et al.  DNA barcoding identifies unknown females and larvae of Fannia R.-D. (Diptera: Fanniidae) from carrion succession experiment and case report. Insects. 2021;12:381. PubMed PMC

Bernasconi  MV, Valsangiacomo  C, Piffaretti  JC, et al.  Phylogenetic relationships among Muscoidea (Diptera: Calyptratae) based on mitochondrial DNA sequences. Insect Mol Biol. 2000;9:67–74. PubMed

Ratnasingham  S, Hebert  PDN. BOLD: the barcode of life data system. Mol Ecol Notes. 2007;7:355–364. PubMed PMC

Droździok  K, Tomsia  M, Rygol  K, et al.  When DNA profiling is not enough? A case of same-sex siblings identification by odontological assessment after gas explosion-related building collapse. Leg Med (Tokyo). 2021;50:101870. PubMed

Seo  Y, Uchiyama  D, Kuroki  K, et al.  STR and mitochondrial DNA SNP typing of a bone marrow transplant recipient after death in a fire. Leg Med. 2012;14:331–335. PubMed

Kadej  M, Szleszkowski  Ł, Thannhäuser  A, et al.  Dermestes (s.str.) haemorrhoidalis (Coleoptera: Dermestidae)—the most frequent species on mummified human corpses in indoor conditions? Three cases from southwestern Poland. Insects. 2023;14:23. PubMed PMC

Finaughty  C, Heathfield  LJ, Kemp  V, et al.  Forensic DNA extraction methods for human hard tissue: a systematic literature review and meta-analysis of technologies and sample type. Forensic Sci Int Genet. 2023;63:102818. PubMed

Tuccia  F, Giordani  G, Vanin  S. State of the art of the funerary archaeoentomological investigations in Italy. Archaeol Anthropol Sci. 2022;14:70.

Grzywacz  A, Hall  MJR, Pape  T, et al.  Muscidae (Diptera) of forensic importance—an identification key to third instar larvae of the western Palaearctic region and a catalogue of the muscid carrion community. Int J Leg Med. 2017;131:855–866. PubMed PMC

Wang  Y, Li  L, Hu  G, et al.  Development of Necrobia ruficollis (Fabricius) (Coleoptera: Cleridae) under different constant temperatures. Insects. 2022;13:319. PubMed PMC

Zanetti  NI, Visciarelli  EC, Centeno  ND. Marks caused by the scavenging activity of Necrobia rufipes (Coleoptera: Cleridae) under laboratory conditions. J Forensic Leg Med. 2015;33:116–120. PubMed

Charabidzé  D, Lavieille  V, Colard  T. Experimental evidence of bone lesions due to larder beetle Dermestes maculatus (Coleoptera: Dermestidae). Biology. 2022;11:1321. PubMed PMC

Grassberger  M, Frank  C. Temperature-related development of the parasitoid wasp Nasonia vitripennis as forensic indicator. Med Vet Entomol. 2003;17:257–262. PubMed

Matuszewski  S, Mądra-Bielewicz  A. Post-mortem interval estimation based on insect evidence in a quasi-indoor habitat. Sci Justice. 2019;59:109–115. PubMed

Adetimehin  AD, Mole  CG, Finaughty  DA, et al.  Parasitic and predatory behavior of Alysia manducator (Hymenoptera: Braconidae) on blow fly larvae feeding on an adult pig carcass in the Western Cape Province of South Africa: preliminary observations and forensic implications. Int J Leg Med. 2024;138:281–288. PubMed PMC

Wolf  TG, Paqué  F, Patyna  MS, et al.  Three-dimensional analysis of the physiological foramen geometry of maxillary and mandibular molars by means of micro-CT. Int J Oral Sci. 2017;9:151–157. PubMed PMC

Hu  G, Wang  M, Wang  Y, et al.  Development of Necrobia rufipes (De Geer, 1775) (Coleoptera: Cleridae) under constant temperatures and its implication in forensic entomology. Forensic Sci Int. 2020;311:110275. PubMed

Bhat  D. Study of nutrient foramina of adult femora with its correlation to length of the bone. Int J Anat Res. 2015;3:1573–1577.

Kretser  H, Stokes  E, Wich  S, et al.  Technological innovations supporting wildlife crime detection, deterrence, and enforcement. In: Gore  ML, editor. Conservation criminology. Chichester (UK): John Wiley & Sons Ltd.; 2017. p. 155–177.

Tobe  SS, Linacre  A. DNA typing in wildlife crime: recent developments in species identification. Forensic Sci Med Pathol. 2010;6:195–206. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...