Human costal cartilage, tooth cavities, and femur nutrient canals-new niches for insects used in forensic entomology
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40271218
PubMed Central
PMC12014527
DOI
10.1093/fsr/owae028
PII: owae028
Knihovny.cz E-zdroje
- Klíčová slova
- DNA barcoding, costal cartilage, foramen nutrients, forensic entomology, forensic sciences, nutrient canal, tooth cavity,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: The study aimed to analyze the entomological material collected during 13 autopsies performed on the unidentified cadavers revealed at different stages of decay in the Upper Silesia Region (Poland) over 2016-2022. During the preparation of human tissues for genetic identification, we revealed larvae, puparia, and adult insects in previously undescribed locations: costal cartilage, femur nutrient canals (foramen nutrients), and tooth cavities. The taxonomical assessment was done using morphological examination or DNA barcoding, where necessary. Based on our observations, we conclude that the apical constriction, foramen, and cavities may serve as migration paths inside teeth, and the femur nutrient canals to the bone marrow. The study also revealed that the beetle Necrobia ruficollis (Fabricius, 1775) and the moth family Pyralidae Latreille, 1802 (Phycitinae) moths can form pupal chambers inside the costal cartilage, indicating that these insects can complete their life cycle inside this cache. We believe that the newly reported locations of carrion insects in human remains may be relevant to forensic entomology, as they provide new opportunities to collect insect evidence. KEY POINTS: Costal cartilage may serve as an occasional cache for adults and immatures of carrion insects.Tooth cavities and apical foramen may serve as entryways for necrophilous insect larvae.Insect larvae use nutrient canals as migratory pathways to the bone marrow.
2nd Faculty of Medicine Charles University Prague Prague Czech Republic
Centre for Advanced Technologies Adam Mickiewicz University in Poznań Poznań Poland
Department of Forensic Medicine Bulovka University Hospital Prague Czech Republic
Faculty of Science Charles University Prague Prague Czech Republic
Forensic DNA Service Prague Czech Republic
Laboratory of Criminalistics Adam Mickiewicz University in Poznań Poznań Poland
Zobrazit více v PubMed
Amendt J, Campobasso CP, Gaudry E, et al. European Association for Forensic Entomology. Best practice in forensic entomology—standards and guidelines. Int J Leg Med. 2007;121:90–104. PubMed
Márquez-Grant N, Roberts J. Forensic ecology handbook: from crime scene to court. Chichester (UK): John Wiley & Sons, Ltd.; 2012.
Skowronek R, Tomsia M, Szpila K, et al. The presence of Diptera larvae in human bones. Forensic Sci Int Gen Suppl Ser. 2015;5:e235–e237.
Becker J, Mahlke NS, Ritz-Timme S, et al. The human intervertebral disc as a source of DNA for molecular identification. Forensic Sci Med Pathol. 2021;17:660–664. PubMed PMC
Tomsia M, Droździok K, Banaszek P, et al. The intervertebral discs' fibrocartilage as a DNA source for genetic identification in severely charred cadavers. Forensic Sci Med Pathol. 2022;18:442–449. PubMed PMC
Tomsia M, Droździok K, Javan G, et al. Costal cartilage ensures low degradation of DNA needed for genetic identification of human remains retrieved at different decomposition stages and different postmortem intervals. Post Hig Med Dosw. 2021;75:852–858.
Freire-Aradas A, Tomsia M, Piniewska-Róg D, et al. Development of an epigenetic age predictor for costal cartilage with a simultaneous somatic tissue differentiation system. Forensic Sci Int Genet. 2023;67:102936. PubMed
Jung JY, So MH, Jeong KS, et al. Epigenetic age prediction using costal cartilage for the investigation of disaster victims and missing persons. J Forensic Sci. 2024;1–9. PubMed
Powers RH. The decomposition of human remains. In: Rich J, Dean DE, Powers RH, editors. Forensic medicine of the lower extremity. Totowa (NJ): The Humana Press Inc.; 2005. p. 3–15.
Tomsia M, Cieśla J, Pilch-Kowalczyk J, et al. Cartilage tissue in forensic science—state of the art and future research directions. Processes. 2022;10:2456.
Tomsia M, Nowicka J, Skowronek R, et al. A comparative study of ethanol concentration in costal cartilage in relation to blood and urine. Processes. 2020;8:1637.
Tomsia M, Głaz M, Nowicka J, et al. Sodium nitrite detection in costal cartilage and vitreous humor—case report of fatal poisoning with sodium nitrite. J Forensic Leg Med. 2021;81:102186. PubMed
Tomsia M, Chełmecka E, Głaz M, et al. Epiglottis cartilage, costal cartilage, and intervertebral disc cartilage as alternative materials in the postmortem diagnosis of methanol poisoning. Toxics. 2023;11:152. PubMed PMC
Westen AA, Gerretsen RR, Maat GJ. Femur, rib, and tooth sample collection for DNA analysis in disaster victim identification (DVI): a method to minimize contamination risk. Forensic Sci Med Pathol. 2008;4:15–21. PubMed
Rennick SL, Fenton TW, Foran DR. The effects of skeletal preparation techniques on DNA from human and non-human bone. J Forensic Sci. 2005;50:1016–1019. PubMed
Senst A, Caliebe A, Drum M, et al. Recommendations for the successful identification of altered human remains using standard and emerging technologies: results of a systematic approach. Forensic Sci Int Genet. 2023;62:102790, 1–14. PubMed
Siriboonpiputtana T, Rinthachai T, Shotivaranon J, et al. Forensic genetic analysis of bone remain samples. Forensic Sci Int. 2018;284:167–175. PubMed
Presecki Z, Brkić H, Primorac D, et al. Methods of preparing the tooth for DNA isolation. Acta Stomatol Croat. 2000;34:21–24.
Hughes-Stamm S, Warnke F, van Daal A. An alternate method for extracting DNA from environmentally challenged teeth for improved DNA analysis. Leg Med (Tokyo). 2016;18:31–36. PubMed
Ortiz-Herrero L, Uribe B, Armas LH, et al. Estimation of the post-mortem interval of human skeletal remains using Raman spectroscopy and chemometrics. Forensic Sci Int. 2021;329:111087, 1–9. PubMed
Megyesi MS, Nawrocki SP, Haskell NH. Using accumulated degree-days to estimate the postmortem interval from decomposed human remains. J Forensic Sci. 2005;50:1–9. PubMed
Klausnitzer B. Die Larven der Käfer Mitteleuropas. Heidelberg, Berlin: Spektrum Akademisher Verlag, 1991–2001. German.
Keys for the Identification of Polish Insects, Polish Entomological Society, 1955–2008. Polish.
Szpila K. Key for the identification of third instars of European blowflies (Diptera: Calliphoridae) of forensic importance. In: Amendt J, Campobasso CP, Goff ML, et al., editors. Current concepts in forensic entomology. Dordrecht (the Netherlands): Springer; 2010. p.43–56.
Fremdt H, Szpila K, Huijbregts H, et al. Lucilia silvarum Meigen, 1826 (Diptera: Calliphoridae)—a new species of interest for forensic entomology in Europe. Forensic Sci Int. 2012;222:335–339. PubMed
Martín-Vega D, Díaz-Aranda LM, Baz A. The immature stages of the necrophagous fly Liopiophila varipes and consideration on the genus Liopiophila (Diptera: Piophilidae). Dtsc Entomol Z. 2014;61:37–42.
Kirinoki M, Hitosugi M, Kato-Hayashi N, et al. Discovery of Liopiophila varipes and Protopiophila contecta (Diptera: Piophilidae) from human cadavers. Forensic Sci Int. 2015;248:e8–e12. PubMed
Gregor F, Rozkošný R, Barták M, et al. The Muscidae (Diptera) of Central Europe. Folia Fac Sci Nat Univ Masaryk Brno Biol. 2002;107:1–280. Brno (Czech Republic): Masaryk University; 2002.
Grzywacz A, Jarmusz M, Walczak K, et al. DNA barcoding identifies unknown females and larvae of Fannia R.-D. (Diptera: Fanniidae) from carrion succession experiment and case report. Insects. 2021;12:381. PubMed PMC
Bernasconi MV, Valsangiacomo C, Piffaretti JC, et al. Phylogenetic relationships among Muscoidea (Diptera: Calyptratae) based on mitochondrial DNA sequences. Insect Mol Biol. 2000;9:67–74. PubMed
Ratnasingham S, Hebert PDN. BOLD: the barcode of life data system. Mol Ecol Notes. 2007;7:355–364. PubMed PMC
Droździok K, Tomsia M, Rygol K, et al. When DNA profiling is not enough? A case of same-sex siblings identification by odontological assessment after gas explosion-related building collapse. Leg Med (Tokyo). 2021;50:101870. PubMed
Seo Y, Uchiyama D, Kuroki K, et al. STR and mitochondrial DNA SNP typing of a bone marrow transplant recipient after death in a fire. Leg Med. 2012;14:331–335. PubMed
Kadej M, Szleszkowski Ł, Thannhäuser A, et al. Dermestes (s.str.) haemorrhoidalis (Coleoptera: Dermestidae)—the most frequent species on mummified human corpses in indoor conditions? Three cases from southwestern Poland. Insects. 2023;14:23. PubMed PMC
Finaughty C, Heathfield LJ, Kemp V, et al. Forensic DNA extraction methods for human hard tissue: a systematic literature review and meta-analysis of technologies and sample type. Forensic Sci Int Genet. 2023;63:102818. PubMed
Tuccia F, Giordani G, Vanin S. State of the art of the funerary archaeoentomological investigations in Italy. Archaeol Anthropol Sci. 2022;14:70.
Grzywacz A, Hall MJR, Pape T, et al. Muscidae (Diptera) of forensic importance—an identification key to third instar larvae of the western Palaearctic region and a catalogue of the muscid carrion community. Int J Leg Med. 2017;131:855–866. PubMed PMC
Wang Y, Li L, Hu G, et al. Development of Necrobia ruficollis (Fabricius) (Coleoptera: Cleridae) under different constant temperatures. Insects. 2022;13:319. PubMed PMC
Zanetti NI, Visciarelli EC, Centeno ND. Marks caused by the scavenging activity of Necrobia rufipes (Coleoptera: Cleridae) under laboratory conditions. J Forensic Leg Med. 2015;33:116–120. PubMed
Charabidzé D, Lavieille V, Colard T. Experimental evidence of bone lesions due to larder beetle Dermestes maculatus (Coleoptera: Dermestidae). Biology. 2022;11:1321. PubMed PMC
Grassberger M, Frank C. Temperature-related development of the parasitoid wasp Nasonia vitripennis as forensic indicator. Med Vet Entomol. 2003;17:257–262. PubMed
Matuszewski S, Mądra-Bielewicz A. Post-mortem interval estimation based on insect evidence in a quasi-indoor habitat. Sci Justice. 2019;59:109–115. PubMed
Adetimehin AD, Mole CG, Finaughty DA, et al. Parasitic and predatory behavior of Alysia manducator (Hymenoptera: Braconidae) on blow fly larvae feeding on an adult pig carcass in the Western Cape Province of South Africa: preliminary observations and forensic implications. Int J Leg Med. 2024;138:281–288. PubMed PMC
Wolf TG, Paqué F, Patyna MS, et al. Three-dimensional analysis of the physiological foramen geometry of maxillary and mandibular molars by means of micro-CT. Int J Oral Sci. 2017;9:151–157. PubMed PMC
Hu G, Wang M, Wang Y, et al. Development of Necrobia rufipes (De Geer, 1775) (Coleoptera: Cleridae) under constant temperatures and its implication in forensic entomology. Forensic Sci Int. 2020;311:110275. PubMed
Bhat D. Study of nutrient foramina of adult femora with its correlation to length of the bone. Int J Anat Res. 2015;3:1573–1577.
Kretser H, Stokes E, Wich S, et al. Technological innovations supporting wildlife crime detection, deterrence, and enforcement. In: Gore ML, editor. Conservation criminology. Chichester (UK): John Wiley & Sons Ltd.; 2017. p. 155–177.
Tobe SS, Linacre A. DNA typing in wildlife crime: recent developments in species identification. Forensic Sci Med Pathol. 2010;6:195–206. PubMed