Molecular Techniques Complement Culture-Based Assessment of Bacteria Composition in Mixed Biofilms of Urinary Tract Catheter-Related Samples
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30949137
PubMed Central
PMC6435596
DOI
10.3389/fmicb.2019.00462
Knihovny.cz E-zdroje
- Klíčová slova
- PCR-DGGE, biofilm, double-J catheter, polymicrobial biofilm, stent, ureteral catheter, urinary catheter, urine culture,
- Publikační typ
- časopisecké články MeSH
Urinary or ureteral catheter insertion remains one of the most common urological procedures, yet is considered a predisposing factor for urinary tract infection. Diverse bacterial consortia adhere to foreign body surfaces and create various difficult to treat biofilm structures. We analyzed 347 urinary catheter- and stent-related samples, treated with sonication, using both routine culture and broad-range 16S rDNA PCR followed by Denaturing Gradient Gel Electrophoresis and Sanger sequencing (PCR-DGGE-S). In 29 selected samples, 16S rRNA amplicon Illumina sequencing was performed. The results of all methods were compared. In 338 positive samples, from which 86.1% were polybacterial, 1,295 representatives of 153 unique OTUs were detected. Gram-positive microbes were found in 46.5 and 59.1% of catheter- and stent-related samples, respectively. PCR-DGGE-S was shown as a feasible method with higher overall specificity (95 vs. 85%, p < 0.01) though lower sensitivity (50 vs. 69%, p < 0.01) in comparison to standard culture. Molecular methods considerably widened a spectrum of microbes detected in biofilms, including the very prevalent emerging opportunistic pathogen Actinotignum schaalii. Using massive parallel sequencing as a reference method in selected specimens, culture combined with PCR-DGGE was shown to be an efficient and reliable tool for determining the composition of urinary catheter-related biofilms. This might be applicable particularly to immunocompromised patients, in whom catheter-colonizing bacteria may lead to severe infectious complications. For the first time, broad-range molecular detection sensitivity and specificity were evaluated in this setting. This study extends the knowledge of biofilm consortia composition by analyzing large urinary catheter and stent sample sets using both molecular and culture techniques, including the widest dataset of catheter-related samples characterized by 16S rRNA amplicon Illumina sequencing.
Department of Clinical Immunology and Allergology Medical Faculty Masaryk University Brno Czechia
Department of Urology St Anne's University Hospital Brno Czechia
Medical Genomics Research Group CEITEC Masaryk University Brno Czechia
Molecular Genetics Laboratory Centre for Cardiovascular Surgery and Transplantation Brno Czechia
Research Centre for Toxic Compounds in the Environment Masaryk University Brno Czechia
Zobrazit více v PubMed
Alteri C. J., Himpsl S. D., Mobley H. L. T. (2015). Preferential use of central metabolism in vivo reveals a nutritional basis for polymicrobial infection. PLoS Pathog. 11:e1004601. 10.1371/journal.ppat.1004601 PubMed DOI PMC
Armbruster C. E., Smith S. N., Johnson A. O., DeOrnellas V., Eaton K. A., Yep A., et al. . (2017). The pathogenic potential of Proteus mirabilis is enhanced by other uropathogens during polymicrobial urinary tract infection. Infect. Immun. 85:e00808–16. 10.1128/IAI.00808-16 PubMed DOI PMC
Azevedo A. S., Almeida C., Melo L. F., Azevedo N. F. (2017). Impact of polymicrobial biofilms in catheter-associated urinary tract infections. Crit. Rev. Microbiol. 43, 423–439. 10.1080/1040841X.2016.1240656 PubMed DOI
Barr-Beare E., Saxena V., Hilt E. E., Thomas-White K., Schober M., Li B., et al. . (2015). The interaction between enterobacteriaceae and calcium oxalate deposits. PLoS ONE 10:e0139575. 10.1371/journal.pone.0139575 PubMed DOI PMC
Bonkat G., Braissant O., Rieken M., Müller G., Frei R., Merwe A., et al. . (2012a). Comparison of the roll-plate and sonication techniques in the diagnosis of microbial ureteral stent colonisation: results of the first prospective randomised study. World J. Urol. 31, 579–584. 10.1007/s00345-012-0963-5 PubMed DOI
Bonkat G., Pickard R., Bartoletti R., Cai T., Bruyère F., Geerlings S. E., et al. (2017). European Association of Urology Guidelines 2017. Available online at: http://uroweb.org/wp-content/uploads/Guidelines_WebVersion_Complete-1.pdf (Accessed June 27, 2018).
Bonkat G., Rieken M., Müller G., Roosen A., Siegel F. P., Frei R., et al. . (2012b). Microbial colonization and ureteral stent-associated storage lower urinary tract symptoms: the forgotten piece of the puzzle? World J. Urol. 31, 541–546. 10.1007/s00345-012-0849-6 PubMed DOI
Bonkat G., Rieken M., Rentsch C. A., Wyler S., Feike A., Schäfer J., et al. . (2011). Improved detection of microbial ureteral stent colonisation by sonication. World J. Urol. 29, 133–138. 10.1007/s00345-010-0535-5 PubMed DOI
Bonkat G., Widmer A. F., Rieken M., van der Merwe A., Braissant O., Müller G., et al. . (2013). Microbial biofilm formation and catheter-associated bacteriuria in patients with suprapubic catheterisation. World J. Urol. 31, 565–571. 10.1007/s00345-012-0930-1 PubMed DOI
Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., et al. . (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. 10.1038/nmeth.f.303 PubMed DOI PMC
Castro J., Machado D., Cerca N. (2019). Unveiling the role of Gardnerella vaginalis in polymicrobial bacterial vaginosis biofilms: the impact of other vaginal pathogens living as neighbors. ISME J. 1 [Epub ahead of print]. 10.1038/s41396-018-0337-0. PubMed DOI PMC
Choe H.-S., Son S.-W., Choi H.-A., Kim H.-J., Ahn S.-G., Bang J.-H., et al. . (2012). Analysis of the distribution of bacteria within urinary catheter biofilms using four different molecular techniques. Am. J. Infect. Control 40, e249–e254. 10.1016/j.ajic.2012.05.010 PubMed DOI
Davies C. E., Hill K. E., Wilson M. J., Stephens P., Hill C. M., Harding K. G., et al. . (2004). Use of 16S ribosomal DNA PCR and denaturing gradient gel electrophoresis for analysis of the microfloras of healing and nonhealing chronic venous leg ulcers. J. Clin. Microbiol. 42, 3549–3557. 10.1128/JCM.42.8.3549-3557.2004 PubMed DOI PMC
Domann E., Hong G., Imirzalioglu C., Turschner S., Kühle J., Watzel C., et al. . (2003). Culture-independent identification of pathogenic bacteria and polymicrobial infections in the genitourinary tract of renal transplant recipients. J. Clin. Microbiol. 41, 5500–5510. 10.1128/JCM.41.12.5500-5510.2003 PubMed DOI PMC
Drancourt M., Bollet C., Carlioz A., Martelin R., Gayral J.-P., Raoult D. (2000). 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J. Clin. Microbiol. 38, 3623–3630. PubMed PMC
Edgar R. C., Haas B. J., Clemente J. C., Quince C., Knight R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200. 10.1093/bioinformatics/btr381 PubMed DOI PMC
Edwards A. M., Grossman T. J., Rudney J. D. (2006). Fusobacterium nucleatum transports noninvasive Streptococcus cristatus into human epithelial cells. Infect. Immun. 74, 654–662. 10.1128/IAI.74.1.654-662.2006 PubMed DOI PMC
Farsi H. M., Mosli H. A., Al-Zemaity M. F., Bahnassy A. A., Alvarez M. (1995). Bacteriuria and colonization of double-pigtail ureteral stents: long-term experience with 237 patients. J. Endourol. 9, 469–472. 10.1089/end.1995.9.469 PubMed DOI
Frank D. N., Wilson S. S., St. Amand A. L., Pace N. R. (2009). Culture-independent microbiological analysis of foley urinary catheter biofilms. PLoS ONE 4:e7811. 10.1371/journal.pone.0007811 PubMed DOI PMC
Hansen W. L. J., van der Donk C. F. M., Bruggeman C. A., Stobberingh E. E., Wolffs P. F. G. (2013). A real-time PCR-based semi-quantitative breakpoint to aid in molecular identification of urinary tract infections. PLoS ONE 8:e61439. 10.1371/journal.pone.0061439 PubMed DOI PMC
He X., Hu W., Kaplan C. W., Guo L., Shi W., Lux R. (2012). Adherence to streptococci facilitates Fusobacterium nucleatum integration into an oral microbial community. Microb. Ecol. 63, 532–542. 10.1007/s00248-011-9989-2 PubMed DOI PMC
Holá V., Ruzicka F., Horka M. (2010). Microbial diversity in biofilm infections of the urinary tract with the use of sonication techniques. FEMS Immunol. Med. Microbiol. 59, 525–528. 10.1111/j.1574-695X.2010.00703.x PubMed DOI
Hooton T. M., Bradley S. F., Cardenas D. D., Colgan R., Geerlings S. E., Rice J. C., et al. . (2010). Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin. Infect. Dis. 50, 625–663. 10.1086/650482 PubMed DOI
Ikeda M., Kobayashi T., Suzuki T., Wakabayashi Y., Ohama Y., Maekawa S., et al. . (2017). Propionimicrobium lymphophilum and Actinotignum schaalii bacteraemia: a case report. New Microbes New Infect. 18, 18–21. 10.1016/j.nmni.2017.03.004 PubMed DOI PMC
Imirzalioglu C., Hain T., Chakraborty T., Domann E. (2008). Hidden pathogens uncovered: metagenomic analysis of urinary tract infections. Andrologia 40, 66–71. 10.1111/j.1439-0272.2007.00830.x PubMed DOI
Kanagawa T. (2003). Bias and artifacts in multitemplate polymerase chain reactions (PCR). J. Biosci. Bioeng. 96, 317–323. 10.1016/S1389-1723(03)90130-7 PubMed DOI
Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., et al. . (2013). Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41:e1. 10.1093/nar/gks808 PubMed DOI PMC
Kliś R., Szymkowiak S., Madej A., Blewniewski M., Krześlak A., Forma E., et al. . (2014). Rate of positive urine culture and double–J catheters colonization on the basis of microorganism DNA analysis. Cent. Eur. J. Urol. 67, 81–85. 10.5173/ceju.2014.01.art18 PubMed DOI PMC
Kommedal Ø., Kvello K., Skjåstad R., Langeland N., Wiker H. G. (2009). Direct 16S rRNA Gene sequencing from clinical specimens, with special focus on polybacterial samples and interpretation of mixed DNA chromatograms. J. Clin. Microbiol. 47, 3562–3568. 10.1128/JCM.00973-09 PubMed DOI PMC
Kotásková I., Mališová B., Obručová H., Holá V., Peroutková T., RuŽička F., et al. . (2017). Contribution of PCR denaturing gradient gel electrophoresis combined with mixed chromatogram software separation for complex urinary sample analysis. J. Mol. Microbiol. Biotechnol. 27, 350–355. 10.1159/000484524 PubMed DOI
Lavigne J.-P., Nicolas-Chanoine M.-H., Bourg G., Moreau J., Sotto A. (2008). Virulent synergistic effect between Enterococcus faecalis and Escherichia coli assayed by using the caenorhabditis elegans model. PLoS ONE 3:e3370. 10.1371/journal.pone.0003370 PubMed DOI PMC
Lehmann L. E., Hauser S., Malinka T., Klaschik S., Stüber F., Book M. (2010). Real-time polymerase chain-reaction detection of pathogens is feasible to supplement the diagnostic sequence for urinary tract infections. BJU Int. 106, 114–120. 10.1111/j.1464-410X.2009.09017.x PubMed DOI
Li Y., Ku C. Y. S., Xu J., Saxena D., Caufield P. W. (2005). Survey of oral microbial diversity using PCR-based denaturing gradient gel electrophoresis. J. Dent. Res. 84, 559–564. 10.1177/154405910508400614 PubMed DOI
Lieske J. C., Tremaine W. J., De Simone C., O'connor H. M., Li X., Bergstralh E. J., et al. (2010). Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int. 78, 1178–1185. 10.1038/ki.2010.310 PubMed DOI PMC
Liu D., Du L., Yu J., Li L., Ai Q., Feng J., et al. . (2015). 16S rDNA PCR-DGGE and sequencing in the diagnosis of neonatal late-onset septicemia. Mol. Med. Rep. 12, 6346–6352. 10.3892/mmr.2015.4131 PubMed DOI
Lotte L., Lotte R., Durand M., Degand N., Ambrosetti D., Michiels J.-F., et al. . (2016). Infections related to Actinotignum schaalii (formerly Actinobaculum schaalii): a 3-year prospective observational study on 50 cases. Clin. Microbiol. Infect. 22, 388–390. 10.1016/j.cmi.2015.10.030 PubMed DOI
Maki D. G., Tambyah P. A. (2001). Engineering out the risk for infection with urinary catheters. Emerg. Infect. Dis. 7, 342–347. 10.3201/eid0702.010240 PubMed DOI PMC
Mrázek J., Štrosová L., Fliegerová K., Kott T., Kopečný J. (2008). Diversity of insect intestinal microflora. Folia Microbiol. 53, 229–233. 10.1007/s12223-008-0032-z PubMed DOI
Mufarrij P. W., Lange J. N., Assimos D. G., Mirzazadeh M., Holmes R. P. (2012). Multibacterial growth from a surgical renal stone culture: a case report and literature review. Rev. Urol. 14:108–114. 10.3909/riu0561 PubMed DOI PMC
Muyzer G., de Waal E. C., Uitterlinden A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700. PubMed PMC
Nadkarni M. A., Martin F. E., Jacques N. A., Hunter N. (2002). Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148, 257–266. 10.1099/00221287-148-1-257 PubMed DOI
Nakada S., Patel S. (2017). Placement and Management of Indwelling Ureteral Stents. Wolters Kluwer. Available online at: https://www.uptodate.com/contents/placement-and-management-of-indwelling-ureteral-stents (Accessed October 27, 2017).
Ozgur B. C., Ekici M., Yuceturk C. N., Bayrak O. (2013). Bacterial colonization of double J stents and bacteriuria frequency. Kaohsiung J. Med. Sci. 29, 658–661. 10.1016/j.kjms.2013.01.017 PubMed DOI PMC
Paick S. H., Park H. K., Oh S.-J., Kim H. H. (2003). Characteristics of bacterial colonization and urinary tract infection after indwelling of double-J ureteral stent. Urology 62, 214–217. 10.1016/S0090-4295(03)00325-X PubMed DOI
Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., et al. . (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196. 10.1093/nar/gkm864 PubMed DOI PMC
Reid G., Younes J. A., Van der Mei H. C., Gloor G. B., Knight R., Busscher H. J. (2011). Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat. Rev. Microbiol. 9, 27–38. 10.1038/nrmicro2473 PubMed DOI
Ryan P. D., Hammer Ø., Harper D. A., Paul Ryan D. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 5–7.
Salter S. J., Cox M. J., Turek E. M., Calus S. T., Cookson W. O., Moffatt M. F., et al. . (2014). Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12:87. 10.1186/s12915-014-0087-z PubMed DOI PMC
Schwaderer A. L., Wolfe A. J. (2017). The association between bacteria and urinary stones. Ann. Transl. Med. 5:32. 10.21037/atm.2016.11.73 PubMed DOI PMC
Shrestha E., White J. R., Yu S.-H., Kulac I., Ertunc O., De Marzo A. M., et al. . (2018). Profiling the urinary microbiome in men with positive versus negative biopsies for prostate cancer. J. Urol. 199, 161–171. 10.1016/j.juro.2017.08.001 PubMed DOI PMC
Tambyah P. A., Halvorson K. T., Maki D. G. (1999). A prospective study of pathogenesis of catheter-associated urinary tract infections. Mayo Clin. Proc. 74, 131–136. 10.4065/74.2.131 PubMed DOI
Tatusova T., Ciufo S., Fedorov B., O'Neill K., Tolstoy I. (2014). RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res. 42, D553–D559. 10.1093/nar/gkt1274 PubMed DOI PMC
Teixeira G. S., Carvalho F. P., Arantes R. M. E., Nunes A. C., Moreira J. L. S., Mendonça M., et al. . (2012). Characteristics of Lactobacillus and Gardnerella vaginalis from women with or without bacterial vaginosis and their relationships in gnotobiotic mice. J. Med. Microbiol. 61, 1074–1081. 10.1099/jmm.0.041962-0 PubMed DOI
Tien B. Y. Q., Goh H. M. S., Chong K. K. L., Bhaduri-Tagore S., Holec S., Dress R., et al. . (2017). Enterococcus faecalis promotes innate immune suppression and polymicrobial catheter-associated urinary tract infection. Infect. Immun. 85:e00378–17. 10.1128/IAI.00378-17 PubMed DOI PMC
van der Zee A., Roorda L., Bosman G., Ossewaarde J. M. (2016). Molecular diagnosis of urinary tract infections by semi-quantitative detection of uropathogens in a routine clinical hospital setting. PLoS ONE 11:e0150755. 10.1371/journal.pone.0150755 PubMed DOI PMC
Wright E. S., Yilmaz L. S., Noguera D. R. (2012). DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl. Environ. Microbiol. 78, 717–725. 10.1128/AEM.06516-11 PubMed DOI PMC
Xu Y., Moser C., Al-Soud W. A., Sørensen S., Høiby N., Nielsen P. H., et al. . (2012). Culture-dependent and -independent investigations of microbial diversity on urinary catheters. J. Clin. Microbiol. 50, 3901–3908. 10.1128/JCM.01237-12 PubMed DOI PMC
Zijnge V., Welling G. W., Degener J. E., van Winkelhoff A. J., Abbas F., Harmsen H. J. M. (2006). Denaturing gradient gel electrophoresis as a diagnostic tool in periodontal microbiology. J. Clin. Microbiol. 44, 3628–3633. 10.1128/JCM.00122-06 PubMed DOI PMC