SARS-CoV-2 Vaccines and Multiple Sclerosis: An Update
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40279527
PubMed Central
PMC12051395
DOI
10.1212/nxi.0000000000200393
Knihovny.cz E-zdroje
- MeSH
- COVID-19 * prevence a kontrola imunologie MeSH
- lidé MeSH
- roztroušená skleróza * farmakoterapie imunologie MeSH
- SARS-CoV-2 imunologie MeSH
- vakcíny proti COVID-19 * imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- vakcíny proti COVID-19 * MeSH
The highly contagious zoonosis coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared a pandemic by the World Health Organization on March 11, 2020, and has led to a global health crisis with nearly 777 million confirmed infections and over 7 million deaths worldwide by November 10, 2024.1-3 Over time, various variants emerged, with Omicron and its sublines dominating the world over the past 3 years.4 In addition, there is increasing evidence regarding the immune response of SARS-CoV-2 vaccines, especially for people with multiple sclerosis (MS) receiving disease-modifying therapies. Hence, with this review, we aim to provide an updated overview and recommendations for clinical practice regarding MS and SARS-CoV-2 vaccines, including efficacy and safety, SARS-CoV-2 variants, vaccine hesitancy, and the immune response under treatment with respective disease-modifying therapies.
Brain and Mind Center University of Sydney Australia; and
Department of Neurology Inselspital Bern University Hospital University of Bern Switzerland
Department of Neurology Medical University of Vienna Austria
Department of Neurology Palacky University Olomouc Czech Republic
Zobrazit více v PubMed
Sharma A, Ahmad Farouk I, Lal SK. Covid-19: a review on the novel coronavirus disease evolution, transmission, detection, control and prevention. Viruses. 2021;13(2):202. doi:10.3390/v13020202 PubMed DOI PMC
World Health Organization . Accessed January 18, 2025. covid19.who.int/
World Health Organization, COVID-19 epidemiological update – 24 December 2024. Accessed January 18, 2025. who.int/publications/m/item/covid-19-epidemiological-update---24-december-2024
Markov PV, Ghafari M, Beer M, et al. . The evolution of SARS-CoV-2. Nat Rev Microbiol. 2023;21(6):361-379. doi:10.1038/s41579-023-00878-2 PubMed DOI
Portaccio E, Fonderico M, Hemmer B, et al. . Impact of COVID-19 on multiple sclerosis care and management: results from the European committee for treatment and research in multiple sclerosis survey. Mult Scler. 2022;28(1):132-138. doi:10.1177/13524585211005339 PubMed DOI PMC
Goverover Y, Chen MH, Botticello A, et al. . Relationships between changes in daily occupations and health-related quality of life in persons with multiple sclerosis during the COVID-19 pandemic. Mult Scler Relat Disord. 2022;57:103339. doi:10.1016/j.msard.2021.103339 PubMed DOI PMC
European Medicines Agency . Accessed January 18, 2025. ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/covid-19-vaccines
Monschein T, Hartung H-P, Zrzavy T, et al. . Vaccination and multiple sclerosis in the era of the COVID-19 pandemic. J Neurol Neurosurg Psychiatry. 2021;92(10):1033-1043. doi:10.1136/jnnp-2021-326839 PubMed DOI PMC
World Health Organization . Accessed January 18, 2025. who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccinestle
COVID19 Vaccine Tracker. Accessed January 18, 2025. covid19.trackvaccines.org/vaccines/
Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol. 2021;21(2):73-82. doi:10.1038/s41577-020-00480-0 PubMed DOI PMC
Mathieu E, Ritchie H, Ortiz-Ospina E, et al. . A global database of COVID-19 vaccinations. Nat Hum Behav. 2021;5(7):947-953. doi:10.1038/s41562-021-01122-8 PubMed DOI
Unicef, COVID-19 Market Dashboard. Accessed January 18, 2025. unicef.org/supply/covid-19-market-dashboard
European Medicines Agency . Accessed January 18, 2025. ema.europa.eu/en/human-regulatory-overview/public-health-threats/coronavirus-disease-covid-19/covid-19-medicines#authorised-covid-19-vaccines-14489
European Medicines Agency , Withdrawn applications and products. Accessed January 18, 2025. ema.europa.eu/en/human-regulatory-overview/public-health-threats/coronavirus-disease-covid-19/covid-19-public-health-emergency-international-concern-2020-23/withdrawn-applications-products#covid-19-vaccines-withdrawn-from-marketing-authorisation-64018
Our World in Data. Accessed January 18, 2025. ourworldindata.org/covid-vaccinations.
Sadoff J, Gray G, Vandebosch A, et al. . Final analysis of efficacy and safety of single-dose Ad26.COV2.S. N Engl J Med. 2022;386(9):847-860. doi:10.1056/nejmoa2117608 PubMed DOI PMC
Thomas SJ, Moreira ED, Kitchin N, et al. . Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months. N Engl J Med. 2021;385(19):1761-1773. doi:10.1056/nejmoa2110345 PubMed DOI PMC
El Sahly HM, Baden LR, Essink B, et al. . Efficacy of the mRNA-1273 SARS-CoV-2 vaccine at completion of blinded phase. N Engl J Med. 2021;385(19):1774-1785. doi:10.1056/nejmoa2113017 PubMed DOI PMC
Voysey M, Costa Clemens SA, Madhi SA, et al. . Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet. 2021;397(10277):881-891. doi:10.1016/S0140-6736(21)00432-3 PubMed DOI PMC
Andrews N, Stowe J, Kirsebom F, et al. . Effectiveness of COVID-19 booster vaccines against COVID-19-related symptoms, hospitalization and death in England. Nat Med. 2022;28(4):831-837. doi:10.1038/s41591-022-01699-1 PubMed DOI PMC
Heath PT, Galiza EP, Baxter DN, et al. . Safety and efficacy of the NVX-CoV2373 coronavirus disease 2019 vaccine at completion of the placebo-controlled phase of a randomized controlled trial. Clin Infect Dis. 2023;76(3):398-407. doi:10.1093/cid/ciac803 PubMed DOI PMC
Juthani PV, Gupta A, Borges KA, et al. . Hospitalisation among vaccine breakthrough COVID-19 infections. Lancet Infect Dis. 2021;21(11):1485-1486. doi:10.1016/S1473-3099(21)00558-2 PubMed DOI PMC
Gilboa M, Mandelboim M, Indenbaum V, et al. . Early immunogenicity and safety of the third dose of BNT162b2 messenger RNA coronavirus disease 2019 vaccine among adults older than 60 years: real-world experience. J Infect Dis. 2022;225(5):785-792. doi:10.1093/infdis/jiab584 PubMed DOI
Singh DD, Parveen A, Yadav DK. SARS-CoV-2: emergence of new variants and effectiveness of vaccines. Front Cell Infect Microbiol. 2021;11:777212-777311. doi:10.3389/fcimb.2021.777212 PubMed DOI PMC
Eyre DW, Taylor D, Purver M, et al. . Effect of Covid-19 vaccination on transmission of alpha and Delta variants. N Engl J Med. 2022;386(8):744-756. doi:10.1056/NEJMoa2116597 PubMed DOI PMC
Olson SM, Newhams MM, Halasa NB, et al. . Effectiveness of BNT162b2 vaccine against critical Covid-19 in adolescents. N Engl J Med. 2022;386(8):713-723. doi:10.1056/NEJMoa2117995 PubMed DOI PMC
Shrotri M, Krutikov M, Nacer-Laidi H, et al. . Duration of vaccine effectiveness against SARS-CoV-2 infection, hospitalisation, and death in residents and staff of long-term care facilities in England (VIVALDI): a prospective cohort study. Lancet Healthy Longev. 2022;3(7):e470-e480. doi:10.1016/S2666-7568(22)00147-7 PubMed DOI PMC
Liu X, Munro APS, Wright A, et al. . Persistence of immune responses after heterologous and homologous third COVID-19 vaccine dose schedules in the UK: eight-month analyses of the COV-BOOST trial. J Infect. 2023;87(1):18-26. doi:10.1016/j.jinf.2023.04.012 PubMed DOI PMC
Dickerman BA, Gerlovin H, Madenci AL, et al. . Comparative effectiveness of third doses of mRNA-based COVID-19 vaccines in US veterans. Nat Microbiol. 2023;8(1):55-63. doi:10.1038/s41564-022-01272-z PubMed DOI PMC
Cohn BA, Cirillo PM, Murphy CC, Krigbaum NY, Wallace AW. SARS-CoV-2 vaccine protection and deaths among US veterans during 2021. Science. 1979)2022;375(6578):331-336. doi:10.1126/science.abm0620 PubMed DOI PMC
Khoury DS, Cromer D, Reynaldi A, et al. . Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021;27(7):1205-1211. doi:10.1038/s41591-021-01377-8 PubMed DOI
Porru S, Monaco MGL, Spiteri G, et al. . Incidence and determinants of symptomatic and asymptomatic SARS-CoV-2 breakthrough infections after booster dose in a large European multicentric cohort of health workers-ORCHESTRA project. J Epidemiol Glob Health. 2023;13(3):577-588. doi:10.1007/s44197-023-00139-8 PubMed DOI PMC
Baerends EAM, Hvidt AK, Reekie J, et al. . SARS-CoV-2 vaccine-induced antibodies protect against Omicron breakthrough infection. iScience. 2023;26(9):107621. doi:10.1016/j.isci.2023.107621 PubMed DOI PMC
Milne G, Hames T, Scotton C, et al. . Does infection with or vaccination against SARS-CoV-2 lead to lasting immunity? Lancet Respir Med. 2021;9(12):1450-1466. doi:10.1016/S2213-2600(21)00407-0 PubMed DOI PMC
Gilboa M, Gonen T, Barda N, et al. . Factors associated with protection from SARS-CoV-2 omicron variant infection and disease among vaccinated health care workers in Israel. JAMA Netw Open. 2023;6(5):e2314757. doi:10.1001/jamanetworkopen.2023.14757 PubMed DOI PMC
Feikin DR, Higdon MM, Abu-Raddad LJ, et al. . Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. Lancet. 2022;399(10328):924-944. doi:10.1016/S0140-6736(22)00152-0 PubMed DOI PMC
Wijaya R, Johnson M, Campbell N, et al. . Predicting COVID-19 infection risk in people who are immunocompromised by antibody testing. Lancet. 2023;402(10396):99-102. doi:10.1016/s0140-6736(23)01180-7 PubMed DOI
Tartof SY, Slezak JM, Puzniak L, et al. . Effectiveness and durability of BNT162b2 vaccine against hospital and emergency department admissions due to SARS-CoV-2 omicron sub-lineages BA.1 and BA.2 in a large health system in the USA: a test-negative, case-control study. Lancet Respir Med. 2023;11(2):176-187. doi:10.1016/S2213-2600(22)00354-X PubMed DOI PMC
Levin EG, Lustig Y, Cohen C, et al. . Waning immune humoral response to BNT162b2 Covid-19 vaccine over 6 months. N Engl J Med. 2021;385(24):e84. doi:10.1056/nejmoa2114583 PubMed DOI PMC
Chemaitelly H, Tang P, Hasan MR, et al. . Waning of BNT162b2 vaccine protection against SARS-CoV-2 infection in Qatar. N Engl J Med. 2021;385(24):e83. doi:10.1056/nejmoa2114114 PubMed DOI PMC
Yadav PD, Kumar S. Global emergence of SARS-CoV-2 variants: new foresight needed for improved vaccine efficacy. Lancet Infect Dis. 2022;22:298-299. doi:10.1016/s1473-3099(21)00687-3 PubMed DOI PMC
Rosenberg ES, Dorabawila V, Easton D, et al. . Covid-19 vaccine effectiveness in New York state. N Engl J Med. 2022;386(2):116-127. doi:10.1056/nejmoa2116063 PubMed DOI PMC
Lin D-Y, Gu Y, Wheeler B, et al. . Effectiveness of Covid-19 vaccines over a 9-month period in North Carolina. N Engl J Med. 2022;386(10):933-941. doi:10.1056/NEJMoa2117128 PubMed DOI PMC
Andrews N, Tessier E, Stowe J, et al. . Duration of protection against mild and severe disease by Covid-19 vaccines. N Engl J Med. 2022;386(4):340-350. doi:10.1056/NEJMoa2115481 PubMed DOI PMC
Tenforde MW, Patel MM, Gaglani M, et al. . Effectiveness of a third dose of Pfizer-BioNTech and moderna vaccines in preventing COVID-19 hospitalization among immunocompetent and immunocompromised adults — United States, August–December 2021. MMWR Morb Mortal Wkly Rep. 2022;71(4):118-124. doi:10.15585/mmwr.mm7104a2 PubMed DOI PMC
Di Fusco M, Moran MM, Cane A, et al. . Evaluation of COVID-19 vaccine breakthrough infections among immunocompromised patients fully vaccinated with BNT162b2. J Med Econ. 2021;24(1):1248-1260. doi:10.1080/13696998.2021.2002063 PubMed DOI
Lipsitch M, Krammer F, Regev-Yochay G, Lustig Y, Balicer RD. SARS-CoV-2 breakthrough infections in vaccinated individuals: measurement, causes and impact. Nat Rev Immunol. 2022;22(1):57-65. doi:10.1038/s41577-021-00662-4 PubMed DOI PMC
Ke R, Martinez PP, Smith RL, et al. . Longitudinal analysis of SARS-CoV-2 vaccine breakthrough infections reveals limited infectious virus shedding and restricted tissue distribution. Open Forum Infect Dis. 2022;9:ofac192-7. doi:10.1093/ofid/ofac192 PubMed DOI PMC
Regev-Yochay G, Amit S, Bergwerk M, et al. . Decreased infectivity following BNT162b2 vaccination: a prospective cohort study in Israel. Lancet Reg Health Eur. 2021;7:100150. doi:10.1016/j.lanepe.2021.100150 PubMed DOI PMC
eReferences are available as supplementary material at Neurology.org/NN.