The response surface method enables efficient optimization of induction parameters for the production of bioactive peptides in fed-batch bioreactors using Escherichia coli
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40281269
DOI
10.1007/s12223-025-01265-5
PII: 10.1007/s12223-025-01265-5
Knihovny.cz E-zdroje
- Klíčová slova
- GLP- 1, Inclusion body, Insulin, Recombinant peptide, Response surface method, Soluble protein expression,
- Publikační typ
- časopisecké články MeSH
The production of recombinant peptides is critical in biotechnology and medicine for treating a variety of diseases. Thus, there is an urgent need for the development of quick, scalable, and cost-effective recombinant protein expression strategies. This study optimizes induction conditions for an insulin precursor, an analog GLP-1 precursor, and a peptide for COVID-19 therapy expression in E. coli using the response surface method. Factors such as pH, temperature, induction time, isopropyl-β-D-thiogalactopyranoside concentration, and optical density significantly influence peptide productivity. Experimental validation supports the effectiveness of these models in predicting peptide yields under optimal conditions. The optimal induction conditions were determined as follows: temperature at 37 °C, pH of the medium 7.0-8.0, induction at the early logarithmic phase of growth, isopropyl-β-D-thiogalactopyranoside concentration of 0.05 mM, and induction time of 6 h. After model validation, the productivity of each peptide producer exceeded 3 g/L. The optimal conditions achieved peptide titers significantly higher than those previously reported, suggesting that this technique is a versatile cultivation technology for the efficient production of different recombinant peptides. In conclusion, our research enhances the understanding of how tailored cultivation conditions can optimize recombinant peptide production efficiency.
ITMO University St Petersburg 197101 Russia
Pharm Holding St Petersburg P Strelna 34 A Svyazi Street 198515 Russia
Zobrazit více v PubMed
Basu A, Li X, Leong SS (2011) Refolding of proteins from inclusion bodies: rational design and recipes. Appl Microbiol Biotechnol 92:241–251. https://doi.org/10.1007/s00253-011-3513-y PubMed DOI
Belgi A, Hossain MA, Tregear WG, Wade G, Wade D (2011) The chemical synthesis of insulin: from the past to the present. Immun Endocr Metab Agents Med Chem (Discontinued) 11:40–47. https://doi.org/10.2174/187152211794519412 DOI
Bentley WE, Davis RH, Kompala DS (1991) Dynamics of induced CAT expression in E. coli. Biotechnol Bioeng 38:749–760. https://doi.org/10.1002/bit.260380709 PubMed DOI
Bhatwa A, Wang W, Hassan YI, Abraham N, Li XZ, Zhou T (2021) Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Front Bioeng Biotechnol 9:630551. https://doi.org/10.3389/fbioe.2021.630551 PubMed DOI PMC
Buchs J (2001) Introduction to advantages and problems of shaken cultures. Biochem Eng J 7:91–98. https://doi.org/10.1016/s1369-703x(00)00106-6 PubMed DOI
Chandrudu S, Simerska P, Toth I (2013) Chemical methods for peptide and protein production. Molecules 18:4373–4388. https://doi.org/10.3390/molecules18044373 PubMed DOI PMC
Czitrom V (1999) One-factor-at-a-time versus designed experiments. Am Stat 53(2):126–131. https://doi.org/10.1080/00031305.1999.10474445 DOI
de Groot NS, Ventura S (2006) Effect of temperature on protein quality in bacterial inclusion bodies. FEBS Lett 580:6471–6476. https://doi.org/10.1016/j.febslet.2006.10.071 PubMed DOI
Dolnik V (2008) Capillary electrophoresis of proteins 2005–2007. Electrophoresis 29:143–156. https://doi.org/10.1002/elps.200700584 PubMed DOI
Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128. https://doi.org/10.1016/j.drudis.2014.10.003 PubMed DOI
Francis DM, Page R (2010) Strategies to optimize protein expression in E. coli. Curr Protoc Protein Sci 61(1):21–25. https://doi.org/10.1002/0471140864.ps0524s61 DOI
Gao M, Ma C, Liu W, Zhu J, Tian H, Gao X, Yao W (2010) Production and purification of an analog of glucagon-like peptide-1 by auto-induction and on-column cleavage in Escherichia coli. World J Microbiol Biotechnol 26:1675–1682. https://doi.org/10.1007/s11274-010-0345-3 DOI
Gibisch M, Muller M, Tauer C, Albrecht B, Hahn R, Cserjan-Puschmann M, Striedner G (2024) A production platform for disulfide-bonded peptides in the periplasm of Escherichia coli. Microb Cell Fact 23:166. https://doi.org/10.1186/s12934-024-02446-6 PubMed DOI PMC
Gil-Garcia M, Navarro S, Ventura S (2020) Coiled-coil inspired functional inclusion bodies. Microb Cell Fact 19:117. https://doi.org/10.1186/s12934-020-01375-4 PubMed DOI PMC
Gomes L, Monteiro G, Mergulhao F (2020) The impact of IPTG induction on plasmid stability and heterologous protein expression by Escherichia Coli biofilms. Int J Mol Sci 21(2):576. https://doi.org/10.3390/ijms21020576 PubMed DOI PMC
Govender K, Naicker T, Lin J, Baijnath S, Chuturgoon AA, Abdul NS, Docrat T, Kruger HG, Govender T (2020) A novel and more efficient biosynthesis approach for human insulin production in Escherichia coli (E. coli). AMB Express 10:43. https://doi.org/10.1186/s13568-020-00969-w PubMed DOI PMC
Gruber CC, Babu VMP, Livingston K, Joisher H, Walker GC (2021) Degradation of the Escherichia coli essential proteins dapb and dxr results in oxidative stress, which contributes to lethality through incomplete base excision repair. mBio 13:e0375621. https://doi.org/10.1128/mbio.03756-21 PubMed DOI
Gutierrez-Gonzalez M, Farias C, Tello S, Perez-Etcheverry D, Romero A, Zuniga R, Ribeiro CH, Lorenzo-Ferreiro C, Molina MC (2019) Optimization of culture conditions for the expression of three different insoluble proteins in Escherichia coli. Sci Rep 9:16850. https://doi.org/10.1038/s41598-019-53200-7 PubMed DOI PMC
Hashemi A, Basafa M, Behravan A (2022) Machine learning modeling for solubility prediction of recombinant antibody fragment in four different E. coli strains. Sci Rep 12:5463. https://doi.org/10.1038/s41598-022-09500-6 PubMed DOI PMC
Heinisch L, Krause M, Roth A, Barth H, Schmidt H (2021) Cytotoxic effects of recombinant StxA2-His in the absence of its corresponding B-subunit. Toxins (Basel) 13(5):307. https://doi.org/10.3390/toxins13050307 PubMed DOI
Ilangala AB, Lechanteur A, Fillet M, Piel G (2021) Therapeutic peptides for chemotherapy: trends and challenges for advanced delivery systems. Eur J Pharm Biopharm 167:140–158. https://doi.org/10.1016/j.ejpb.2021.07.010
Incir I, Kaplan O (2024) Escherichia coli in the production of biopharmaceuticals. Biotechnol Appl Biochem 72:528–541. https://doi.org/10.1002/bab.2664
James J, Yarnall B, Koranteng A, Gibson J, Rahman T, Doyle DA (2021) Protein over-expression in Escherichia coli triggers adaptation analogous to antimicrobial resistance. Microb Cell Fact 20:13. https://doi.org/10.1186/s12934-020-01462-6 PubMed DOI PMC
Kasli IM, Thomas ORT, Overton TW (2019) Use of a design of experiments approach to optimise production of a recombinant antibody fragment in the periplasm of Escherichia coli: selection of signal peptide and optimal growth conditions. AMB Express 9:5. https://doi.org/10.1186/s13568-018-0727-8 PubMed DOI PMC
Kiefhaber T, Rudolph R, Kohler HH, Buchner J (1991) Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Biotechnology (NY) 9:825–829. https://doi.org/10.1038/nbt0991-825 DOI
Kornakov IA, Khasanshina ZR, Senichkina DA, Filipenko AA, Lunev IS, Drai RV (2023) Optimisation of induction conditions for a bacterial strain producing proinsulin aspart. Biological Products Prevention, Diagnosis, Treatment 23:219–230. https://doi.org/10.30895/2221-996X-2023-23-2-1-14 DOI
Kurien BT, Scofield RH (2012) Protein electrophoresis: methods and protocols. Totowa
Lamer T, Vederas JC (2023) Simplified cloning and isolation of peptides from “sandwiched” SUMO-peptide-intein fusion proteins. BMC Biotechnol 23:11. https://doi.org/10.1186/s12896-023-00779-5 PubMed DOI PMC
Latypov VF, Kornakov IA, Robustova SE, Khomutova OS, Rodionov PP (2020) Recombinant plasmid DNA pF646 encoding a hybrid polypeptide containing insulin aspart, and Escherichia coli strain – producer of the hybrid polypeptide containing insulin aspart. Patent RU2729353C1. Russia
Lau JL, Dunn MK (2018) Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 26:2700–2707. https://doi.org/10.1016/j.bmc.2017.06.052 PubMed DOI
Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14:98–95. https://doi.org/10.1016/0167-7799(96)80930-9 PubMed DOI
Li J, Jaitzig J, Hillig F, Sussmuth R, Neubauer P (2014) Enhanced production of the nonribosomal peptide antibiotic valinomycin in Escherichia coli through small-scale high cell density fed-batch cultivation. Appl Microbiol Biotechnol 98:591–601. https://doi.org/10.1007/s00253-013-5309-8 PubMed DOI
Li PZC, Li Q, Zhao W, Luo X (2021) Expression and optimizated of liraglutide precursor peptide GLP-1(7–37) K34R in Escherichia coli. Herald of Medicine 40:729–734. https://doi.org/10.3870/j.issn.1004-0781.2021.06.004 DOI
Li Y (2009) Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli. Biotechnol Appl Biochem 54:1–9. https://doi.org/10.1042/BA20090087 PubMed DOI
Liu M, Weiss MA, Arunagiri A, Yong J, Rege N, Sun J, Haataja L, Kaufman RJ, Arvan P (2018) Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes Obes Metab 20(2):28–50. https://doi.org/10.1111/dom.13378 PubMed DOI PMC
Liu X, Li N, Jia M, Zhang S, Niu H, Li Q, Gu P (2020) The effects of kanamycin concentration on gene transcription levels in Escherichia coli. 3 Biotech 10:93. https://doi.org/10.1007/s13205-020-2100-2 PubMed DOI PMC
Ma B, Tu P, Zhao X, Zhang Y, Wang Y, Ma C, Ji Y, Li X, Abbas SA, Li M (2013) Expression and purification of optimized rolGLP-1, a novel GLP-1 analog, in Escherichia coli BL21(DE3) and its good glucoregulatory effect on type 2 diabetic mice. Curr Pharm Biotechnol 14:985–994. https://doi.org/10.2174/1389201014666131226155553 PubMed DOI
Malakar P, Venkatesh KV (2012) Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins. Appl Microbiol Biotechnol 93:2543–2549. https://doi.org/10.1007/s00253-011-3642-3 PubMed DOI
Manandhar B, Ahn JM (2015) Glucagon-like peptide-1 (GLP-1) analogs: recent advances, new possibilities, and therapeutic implications. J Med Chem 58:1020–1037. https://doi.org/10.1021/jm500810s PubMed DOI
McDaniel LE, Bailey EG, Zimmerli A (1965) Effect of oxygen-supply rates on growth of Escherichia coli II. Comparison of results in shake flasks and 50-liter fermentor. Appl Microbiol 13:115–119. https://doi.org/10.1128/am.13.1.115-119.1965 PubMed DOI PMC
Mitraki A, Fane B, Haase-Pettingell C, Sturtevant J, King J (1991) Global suppression of protein folding defects and inclusion body formation. Science 253:54–58. https://doi.org/10.1126/science.1648264 PubMed DOI
Neubauer P, Hofmann K, Holst O, Mattiasson B, Kruschke P (1992) Maximizing the expression of a recombinant gene in Escherichia coli by manipulation of induction time using lactose as inducer. Appl Microbiol Biotechnol 36:739–744. https://doi.org/10.1007/BF00172185 PubMed DOI
Nguyen BN, Tieves F, Rohr T, Wobst H, Schopf FS, Solano JDM, Schneider J, Stock J, Uhde A, Kalthoff T, Jaeger KE, Schmitt L, Schwarz C (2021) Numaswitch: an efficient high-titer expression platform to produce peptides and small proteins. AMB Express 11:48. https://doi.org/10.1186/s13568-021-01204-w PubMed DOI PMC
Peroutka LRJ, Orcutt SJ, Strickler JE, Butt TR (2011) SUMO fusion technology for enhanced protein expression and purification in prokaryotes and eukaryotes. Methods Mol Biol 705:15–30. https://doi.org/10.1007/978-1-61737-967-3_2 DOI
Restrepo-Pineda S, Sanchez-Puig N, Perez NO, Garcia-Hernandez E, Valdez-Cruz NA, Trujillo-Roldan MA (2022) The pre-induction temperature affects recombinant HuGM-CSF aggregation in thermoinducible Escherichia coli. Appl Microbiol Biotechnol 106:2883–2902. https://doi.org/10.1007/s00253-022-11908-z PubMed DOI PMC
Rong Y, Jensen SI, Lindorff-Larsen K, Nielsen AT (2023) Folding of heterologous proteins in bacterial cell factories: cellular mechanisms and engineering strategies. Biotechnol Adv 63:108079. https://doi.org/10.1016/j.biotechadv.2022.108079 PubMed DOI
Sahoo A, Das PK, Dasu VV, Patra S (2024) Insulin evolution: a holistic view of recombinant production advancements. Int J Biol Macromol 277:133951. https://doi.org/10.1016/j.ijbiomac.2024.133951 PubMed DOI
Schein CH, Noteborn MH (1988) Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Biotechnology 6(3):291–294. https://doi.org/10.1038/nbt0388-291 DOI
Schellman JA (1997) Temperature, stability, and the hydrophobic interaction. Biophys J 73:2960–2964. https://doi.org/10.1016/S0006-3495(97)78324-3 PubMed DOI PMC
Shah JN, Guo GQ, Krishnan A, Ramesh M, Katari NK, Shahbaaz M, Abdellattif MH, Singh SK, Dua K (2022) Peptides-based therapeutics: emerging potential therapeutic agents for COVID-19. Therapie 77:319–328. https://doi.org/10.1016/j.therap.2021.09.007 PubMed DOI
Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK (2015) Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact 14:41. https://doi.org/10.1186/s12934-015-0222-8 PubMed DOI PMC
Song JM, An YJ, Kang MH, Lee YH, Cha SS (2012) Cultivation at 6–10 °C is an effective strategy to overcome the insolubility of recombinant proteins in Escherichia coli. Protein Expr Purif 82:297–301. https://doi.org/10.1016/j.pep.2012.01.020 PubMed DOI
Tahir S, Iqbal MM, Akhtar MW, Wang Q, Sun T, Sadaf S (2020) SUMO-fusion and autoinduction-based combinatorial approach for enhanced production of bioactive human interleukin-24 in Escherichia coli. Appl Microbiol Biotechnol 104:9671–9682. https://doi.org/10.1007/s00253-020-10921-4 PubMed DOI
Todaro B, Ottalagana E, Luin S, Santi M (2023) Targeting peptides: the new generation of targeted drug delivery systems. Pharm 15:1648. https://doi.org/10.3390/pharmaceutics15061648
Uhoraningoga A, Kinsella GK, Henehan GT, Ryan BJ (2018) The Goldilocks approach: a review of employing design of experiments in prokaryotic recombinant protein production. Bioengineering (Basel) 5(4):89. https://doi.org/10.3390/bioengineering5040089 PubMed DOI
Valdez-Cruz NA, Reynoso-Cereceda GI, Perez-Rodriguez S, Restrepo-Pineda S, Gonzalez-Santana J, Olvera A, Zavala G, Alagon A, Trujillo-Roldan MA (2017) Production of a recombinant phospholipase A2 in Escherichia coli using resonant acoustic mixing that improves oxygen transfer in shake flasks. Microb Cell Fact 16:129. https://doi.org/10.1186/s12934-017-0746-1 PubMed DOI PMC
Walsh G (2018) Biopharmaceutical benchmarks 2018. Nat Biotechnol 36:1136–1145. https://doi.org/10.1038/nbt.4305 PubMed DOI
Wang J, Chen L, Qin S, Xie M, Luo SZ, Li W (2024) Advances in biosynthesis of peptide drugs: technology and industrialization. Biotechnol J 19:e2300256. https://doi.org/10.1002/biot.202300256 PubMed DOI
Wang L, Wang N, Zhang W, Cheng X, Yan Z, Shao G, Wang X, Wang R, Fu C (2022) Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 7:48. https://doi.org/10.1038/s41392-022-00904-4 PubMed DOI PMC
Winkler J, Seybert A, Konig L, Pruggnaller S, Haselmann U, Sourjik V, Weiss M, Frangakis AS, Mogk A, Bukau B (2010) Quantitative and spatio-temporal features of protein aggregation in Escherichia coli and consequences on protein quality control and cellular ageing. EMBO J 29:910–923. https://doi.org/10.1038/emboj.2009.412 PubMed DOI PMC
Wood TK, Peretti SW (1991) Effect of chemically-induced, cloned-gene expression on protein synthesis in E. Coli. Biotechnol Bioeng 38:397–412. https://doi.org/10.1002/bit.260380410 PubMed DOI
Wu GQ, Li LX, Ding JX, Wen LZ, Shen ZL (2008) High-level expression and novel purification strategy of recombinant thanatin analog in Escherichia coli. Curr Microbiol 57:95–101. https://doi.org/10.1007/s00284-008-9106-z PubMed DOI
Zhang ZX, Nong FT, Wang YZ, Yan CX, Gu Y, Song P, Sun XM (2022) Strategies for efficient production of recombinant proteins in Escherichia coli: alleviating the host burden and enhancing protein activity. Microb Cell Fact 21:191. https://doi.org/10.1186/s12934-022-01917-y PubMed DOI PMC