Treatment of Large Cartilage Defects in the Knee by Hydrogel-Based Autologous Chondrocyte Implantation: A 5-Year Follow-Up of a Prospective, Multicenter, Single-Arm Phase III Trial

. 2025 Apr 28 ; () : 19476035251334737. [epub] 20250428

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40289921

ObjectiveTo evaluate efficacy and safety at 5 years after treatment with hydrogel-based autologous chondrocyte implantation (ACI) for large cartilage defects in the knee.DesignProspective, multicenter, single-arm, Phase III clinical trial. ACI was performed in 100 patients with focal full-thickness cartilage defects ranging from 4 to 12 cm2 in size. The primary outcome measure was the responder rate (defined as improvement by ≥10 points) at 2 years using the Knee Injury and Osteoarthritis Outcome Score (KOOS).ResultsThe preoperative overall KOOS was 39.8 points and continuously increased to 84.7 points at 5 years (mean increase 44.1 points, 95% CI = 40.4-47.9, P < 0.0001). The primary study endpoint (i.e., a KOOS responder rate of >40%) was descriptively met at each assessment timepoint from 3 months to 5 years (Month 3: 75.5%, 95% CI = 65.6-83.8; Year 2: 93.0%, 95% CI = 86.1-97.1, Year 5: 92.8%, 95% CI = 85.7-97.0). International Knee Documentation Committee (IKDC) subjective and objective scores and quality of life assessments (EQ-5D-5L) supported the results seen for the KOOS. The overall treatment failure rate at 5 years was 1%. All treatment-related adverse events were of mild or moderate intensity and mostly occurred within the first year after treatment.ConclusionsHydrogel-based ACI has been shown to be a safe and effective treatment option for patients with large knee cartilage defects with sustained efficacy up to 5 years as demonstrated by consistent and clinically relevant improvements in all investigated efficacy variables. No remarkable adverse events or safety issues were noted.

Zobrazit více v PubMed

Muthu S, Korpershoek JV, Novais EJ, Tawy GF, Hollander AP, Martin I. Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies. Nat Rev Rheumatol. 2023;19(7):403-16. doi:10.1038/s41584-023-00979-5. PubMed DOI

Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1993;75(4):532-53. doi:10.2106/00004623-199304000-00009. PubMed DOI

Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. Br Med Bull. 2008;87:77-95. doi:10.1093/bmb/ldn025. PubMed DOI

Schinhan M, Gruber M, Vavken P, Dorotka R, Samouh L, Chiari C, et al.. Critical-size defect induces unicompartmental osteoarthritis in a stable ovine knee. J Orthop Res. 2012;30(2):214-20. doi:10.1002/jor.21521. PubMed DOI

Hunziker EB, Lippuner K, Keel MJ, Shintani N. An educational review of cartilage repair: precepts & practice–-myths & misconceptions–progress & prospects. Osteoarthritis Cartilage. 2015;23(3):334-50. doi:10.1016/j.joca.2014.12.011. PubMed DOI

Rehman S, Iqbal S, Umair Shahid M, Soman Jahangir M, Latif Malik A. Cartilage: structure, function, and the pathogenesis of osteoarthritis. doi:10.5772/intechopen.1003264. DOI

Husen M, Custers RJH, Hevesi M, Krych AJ, Saris DBF. Size of cartilage defects and the need for repair—a systematic review. J Cartil Jt Preserv. 2022;2(3):100049.

Angele P, Zellner J, Schröter S, Flechtenmacher J, Fritz J, Niemeyer P. Biological reconstruction of localized full-thickness cartilage defects of the knee: a systematic review of level 1 studies with a minimum follow-up of 5 years. Cartilage. 2022;13(4):5-18. doi:10.1177/19476035221129571. PubMed DOI PMC

Vanlauwe J, Saris DB, Victor J, Almqvist KF, Bellemans J, Luyten FP., et al.. Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters. Am J Sports Med. 2011;39(12):2566-74. doi:10.1177/0363546511422220. PubMed DOI

Niemeyer P, Albrecht D, Aurich M, et al.. Empfehlungen der AG klinische geweberegeneration zur behandlung von knorpelschäden am kniegelenk. Z Orthop Unfall. 2023;161(1):57-64. doi:10.1055/a-1663-6807. PubMed DOI

Biant LC, McNicholas MJ, Sprowson AP, Spalding T. The surgical management of symptomatic articular cartilage defects of the knee: consensus statements from United Kingdom knee surgeons. Knee. 2015;22(5):446-9. doi:10.1016/j.knee.2015.06.001. PubMed DOI

National Institute for Health and Care Excellence Autologous chondrocyte implantation for treating symptomatic articular cartilage defects of the knee: technology appraisal guidance. 2017. [cited 2017 Oct 4]. Available from: www.nice.org.uk/guidance/ta477.

Sanders TL, Pareek A, Obey MR, Johnson NR, Carey JL, Stuart MJ, et al.. High rate of osteoarthritis after osteochondritis dissecans fragment excision compared with surgical restoration at a mean 16-year follow-up. Am J Sports Med. 2017;45(8):1799-805. doi:10.1177/0363546517699846. PubMed DOI

Jungmann PM, Gersing AS, Baumann F, Holwein C, Braun S, Neumann, et al.. Cartilage repair surgery prevents progression of knee degeneration. Knee Surg Sports Traumatol Arthrosc. 2019;27:3001-13. doi:10.1007/s00167-018-5321-8. PubMed DOI

Weishorn J, Wiegand J, Koch K-A, Trefzer R, Renkawitz T, Walker T, et al.. Favourable clinical outcomes and low revision rate after M-ACI in adolescents with immature cartilage compared to adult controls: results at 10 years. Knee Surg Sports Traumatol Arthrosc. 2024;33:167-76. doi:10.1002/ksa.12359. PubMed DOI PMC

Riboh JC, Cvetanovich GL, Cole BJ, Yanke AB. Comparative efficacy of cartilage repair procedures in the knee: a network meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2017;25(12):3786-99. doi:10.1007/s00167-016-4300-1. PubMed DOI

Devitt BM, Bell SW, Webster KE, Feller JA, Whitehead TS. Surgical treatments of cartilage defects of the knee: systematic review of randomised controlled trials. Knee. 2017;24(3):508-17. doi:10.1016/j.knee.2016.12.002. PubMed DOI

Jones KJ, Kelley BV, Arshi A, McAllister DR, Fabricant PD. Comparative effectiveness of cartilage repair with respect to the minimal clinically important difference. Am J Sports Med. 2019;47(13):3284-93. doi:10.1177/0363546518824552. PubMed DOI

Zaffagnini S, Boffa A, Andriolo L, Reale D, Busacca M, Di Martino A, et al.. Mosaicplasty versus matrix-assisted autolougous chondrocyte transplantation for knee cartilage defects: a long-term clinical and imaging evaluation. Appl Sci. 2020;10:4615.

Zamborsky R, Danisovic L. Surgical techniques for knee cartilage repair: an updated large-scale systematic review and network meta-analysis of randomized controlled trials. Arthroscopy. 2020;36(3):845-58. doi:10.1016/j.arthro.2019.11.096. PubMed DOI

Harris JD, Siston RA, Brophy RH, Lattermann C, Carey JL, Flanigan DC. Failures, re-operations, and complications after autologous chondrocyte implantation–a systematic review. Osteoarthritis Cartilage. 2011;19(7):779-91. doi:10.1016/j.joca.2011.02.010. PubMed DOI

Bretschneider H, Trattnig S, Landgraeber S, Hartmann A, Günther KP, Dienst M, et al.. Arthroscopic matrix-associated, injectable autologous chondrocyte transplantation of the hip: significant improvement in patient-related outcome and good transplant quality in MRI assessment. Knee Surg Sports Traumatol Arthrosc. 2019;28:1317-24. doi:10.1007/s00167-019-05466-7. PubMed DOI

Niemeyer P, Hanus M, Belickas J, László T, Gudas R, Fiodorovas M, et al.. Treatment of large cartilage defects in the knee by hydrogel-based autologous chondrocyte implantation: two-year results of a prospective, multicenter, single-arm phase III trial. Cartilage. 2022;13(1):19476035221085146. doi:10.1177/19476035221085146. PubMed DOI PMC

Hirschmüller A, Baur H, Braun S, Kreuz PC, Suedkamp NP, Niemeyer P. Rehabilitation After autologous chondrocyte implantation for isolated cartilage defects of the knee. Am J Sports Med. 2011;39:2686-96. doi:10.1177/0363546511404204. PubMed DOI

Bekkers JE, de Windt TS, Raijmakers NJH, Dhert WJA, Saris DBF. Validation of the Knee Injury and Osteoarthritis Outcome Score (KOOS) for the treatment of focal cartilage lesions. Osteoarthritis Cartilage. 2009;17(11):1434-9. doi:10.1016/j.joca.2009.04.019. PubMed DOI

Herdman M, Gudex C, Lloyd A, Janssen M, Kind P, Parkin D, et al.. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Qual Life Res. 2011;20(10):1727-36. doi:10.1007/s11136-011-9903-x. PubMed DOI PMC

Schreiner MM, Raudner M, Marlovits S, Bohndorf K, Weber M, Zalaudek M, et al.. The MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) 2.0 knee score and atlas. Cartilage. 2021;13:571S-587S. doi:10.1177/1947603519865308. PubMed DOI PMC

Domayer SE, Welsch GH, Dorotka R, Mamisch TC, Marlovits S, Szomolanyi P, et al.. MRI monitoring of cartilage repair in the knee: a review. Semin Musculoskelet Radiol. 2008;12(4):302-17. doi:10.1055/s-0028-1100638. PubMed DOI

Domayer SE, Welsch GH, Nehrer S, Chiari C, Dorotka R, Szomolanyi P, et al.. T2 mapping and dGEMRIC after autologous chondrocyte implantation with a fibrin-based scaffold in the knee: preliminary results. Eur J Radiol. 2010;73(3):636-42. doi:10.1016/j.ejrad.2008.12.006. PubMed DOI

Welsch GH, Mamisch TC, Domayer SE, Dorotka R, Kutscha-Lissberg F, Marlovits S, et al.. Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures–initial experience. Radiology. 2008;247(1):154-61. doi:10.1148/radiol.2471070688. PubMed DOI

Welsch GH, Mamisch TC, Quirbach S, Zak L, Marlovits S, Trattnig S. Evaluation and comparison of cartilage repair tissue of the patella and medial femoral condyle by using morphological MRI and biochemical zonal T2 mapping. Eur Radiol. 2009;19(5):1253-62. doi:10.1007/s00330-008-1249-6. PubMed DOI

Welsch GH, Trattnig S, Domayer S, Marlovits S, White LM, Mamisch TC. Multimodal approach in the use of clinical scoring, morphological MRI and biochemical T2-mapping and diffusion-weighted imaging in their ability to assess differences between cartilage repair tissue after microfracture therapy and matrix-associated autologous chondrocyte transplantation: a pilot study. Osteoarthritis Cartilage. 2009;17(9):1219-27. PubMed

Welsch GH, Zak L, Mamisch TC, Resinger C, Marlovits S, Trattnig S. Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 Tesla. Invest Radiol. 2009;44(9):603-12. doi:10.1097/RLI.0b013e3181b5333c. PubMed DOI

Kurkijärvi JE, Mattila L, Ojala RO, Vasara AI, Jurvelin JS, Kiviranta I, et al.. Evaluation of cartilage repair in the distal femur after autologous chondrocyte transplantation using T2 relaxation time and dGEMRIC. Osteoarthritis Cartilage. 2007;15(4):372-8. doi:10.1016/j.joca.2006.10.001. PubMed DOI

Roos EM, Lohmander LS. The Knee injury and Osteoarthritis Outcome Score (KOOS): from joint injury to osteoarthritis. Health Qual Life Outcomes. 2003;1:64. doi:10.1186/1477-7525-1-64. PubMed DOI PMC

de Vet HC, Ostelo RW, Terwee CB, van der, Roer N, Knol DL, Beckerman H, et al.. Minimally important change determined by a visual method integrating an anchor-based and a distribution-based approach. Qual Life Res. 2007;16(1):131-42. doi:10.1007/s11136-006-9109-9. PubMed DOI PMC

Ogura T, Ackermann J, Barbieri Mestriner A, Merkely G, Gomoll AH. Minimal clinically important differences and substantial clinical benefit in patient-reported outcome measures after autologous chondrocyte implantation. Cartilage. 2020;11:410-22. doi:10.1177/1947603518799839. PubMed DOI PMC

Ebert JR, Fallon M, Wood DJ, Janes GC. A prospective clinical and radiological evaluation at 5 years after arthroscopic matrix-induced autologous chondrocyte implantation. Am J Sports Med. 2017;45(1):59-69. doi:10.1177/0363546516663493. PubMed DOI

Ebert JR, Fallon M, Ackland TR, Janes GC, Wood DJ. Minimum 10-year clinical and radiological outcomes of a randomized controlled trial evaluating 2 different approaches to full weightbearing after matrix-induced autologous chondrocyte implantation. Am J Sports Med. 2020;48(1):133-42. doi:10.1177/0363546519886548. PubMed DOI

Marlovits S, Aldrian S, Wondrasch B, Zak L, Albrecht C, Welsch G, et al.. Clinical and radiological outcomes 5 years after matrix-induced autologous chondrocyte implantation in patients with symptomatic, traumatic chondral defects. Am J Sports Med. 2012;40(10):2273-80. doi:10.1177/0363546512457008. PubMed DOI

Basad E, Wissing FR, Fehrenbach P, Rickert M, Steinmeyer J, Ishaque B. Matrix-induced autologous chondrocyte implantation (MACI) in the knee: clinical outcomes and challenges. Knee Surg Sports Traumatol Arthrosc. 2015;23(12):3729-35. doi:10.1007/s00167-014-3295-8. PubMed DOI

Filardo G, Andriolo L, Sessa A, Vannini F, Ferruzzi A, Marcacci M, et al.. Age is not a contraindication for cartilage surgery: a critical analysis of standardized outcomes at long-term follow-up. Am J Sports Med. 2017;45(8):1822-8. doi:10.1177/0363546517695088. PubMed DOI

Kreuz PC, Kalkreuth RH, Niemeyer P, Uhl M, Erggelet C. Long-term clinical and MRI results of matrix-assisted autologous chondrocyte implantation for articular cartilage defects of the knee. Cartilage. 2019;10:305-13. doi:10.1177/1947603518756463. PubMed DOI PMC

Kon E, Filardo G, Gobbi A, Berruto M, Andriolo L, Ferrua P, et al.. Long-term Results after hyaluronan-based MACT for the treatment of cartilage lesions of the patellofemoral joint. Am J Sports Med. 2016;44(3):602-8. doi:10.1177/0363546515620194. PubMed DOI

Kon E, Filardo G, Berruto M, Benazzo F, Zanon G, Della Villa S, et al.. Articular cartilage treatment in high-level male soccer players: a prospective comparative study of arthroscopic second-generation autologous chondrocyte implantation versus microfracture. Am J Sports Med. 2011;39(12):2549-57. PubMed

Gille J, Behrens P, Schulz AP, Oheim R, Kienast B. Matrix-associated autologous chondrocyte implantation: a clinical follow-up at 15 years. Cartilage. 2016;7(4):309-15. doi:10.1177/1947603516638901. PubMed DOI PMC

Filardo G, Kon E, Andriolo L, Di Matteo B, Balboni F, Marcacci M. Clinical profiling in cartilage regeneration: prognostic factors for midterm results of matrix-assisted autologous chondrocyte transplantation. Am J Sports Med. 2014;42(4):898-905. doi:10.1177/0363546513518552. PubMed DOI

Brix MO, Stelzeneder D, Chiari C, Koller U, Nehrer S, Dorotka R., et al.. Treatment of full-thickness chondral defects with hyalograft C in the knee: long-term results. Am J Sports Med. 2014;42(6):1426-32. doi:10.1177/0363546514526695. PubMed DOI

Ehmann YJ, Esser T, Seyam A, Rupp MC, Mehl J, Siebenlist S, et al.. Low postoperative complication rate with high survival rate and good clinical outcome 9 years after autologous chondrocyte transplantation of the knee joint. Arch Orthop Trauma Surg. 2022;143:2665-74. doi:10.1007/s00402-022-04611-1. PubMed DOI PMC

Ebert JR, Zheng M, Fallon M, Wood DJ, Janes GC. 10-year prospective clinical and radiological evaluation after matrix-induced autologous chondrocyte implantation and comparison of tibiofemoral and patellofemoral graft outcomes. Am J Sports Med. 2024;52(4):977-86. doi:10.1177/03635465241227969. PubMed DOI PMC

Pareek A, Carey JL, Reardon PJ, Peterson L, Stuart MJ, Krych AJ. Long-term outcomes after autologous chondrocyte implantation: a systematic review at mean follow-up of 11.4 years. Cartilage. 2016;7(4):298-308. doi:10.1177/1947603516630786. PubMed DOI PMC

Grossman AD, den Haese JP, Georger L, Mc Millan S, Tuck JA. Matrix-Induced Autologous Chondrocyte Implantation (MACI) is largely effective and provides significant improvement in patients with symptomatic, large chondral defects: a systematic review and meta-analysis. Surg Technol Int. 2022;41:329-35. PubMed

Muthu S, Viswanathan VK, Chellamuthu G, Thabrez M. Clinical effectiveness of various treatments for cartilage defects compared with microfracture: a network meta-analysis of randomized controlled trials. J Cartil Jt Preserv. 2024;4(2):100163. doi:10.1016/j.jcjp.2023.100163. DOI

Hoburg A, Niemeyer P, Laute V, Zinser W, John T, Becher C, et al.. Safety and efficacy of matrix-associated autologous chondrocyte implantation with spheroids for patellofemoral or tibiofemoral defects: a 5-year follow-up of a phase 2, dose-confirmation trial. Orthop J Sports Med. 2022;10(1):23259671211053380. doi:10.1177/23259671211053380. PubMed DOI PMC

Niemeyer P, Laute V, Zinser W, John T, Becher C, Diehl P, et al.. Safety and efficacy of matrix-associated autologous chondrocyte implantation with spheroid technology is independent of spheroid dose after 4 years. Knee Surg Sports Traumatol Arthrosc. 2020;28(4):1130-43. doi:10.1007/s00167-019-05786-8. PubMed DOI

Brittberg M, Recker D, Ilgenfritz J, Saris DBF; SUMMIT Extension Study Group. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: five-year follow-up of a prospective randomized trial. Am J Sports Med. 2018;46(6):1343-51. doi:10.1177/0363546518756976. PubMed DOI

Hoburg A, Niemeyer P, Laute V, Zinser W, Becher C, Kolombe T, et al.. Sustained superiority in KOOS subscores after matrix-associated chondrocyte implantation using spheroids compared to microfracture. Knee Surg Sports Traumatol Arthrosc. 2023;31:2482-93. doi:10.1007/s00167-022-07194-x. PubMed DOI

Hoburg A, Niemeyer P, Laute V, Zinser W, Becher C, Kolombe T, et al.. Matrix-associated autologous chondrocyte implantation with spheroid technology is superior to arthroscopic microfracture at 36 months regarding activities of daily living and sporting activities after treatment. Cartilage. 2021;13:437S-448S. doi:10.1177/1947603519897290. PubMed DOI PMC

Bumberger A, Niemeyer P, Angele P, Wright EK, Faber SO. Hydrogel-based and spheroid-based autologous chondrocyte implantation of the knee show similar 2-year functional outcomes: an analysis based on the German cartilage registry (KnorpelRegister DGOU). Knee Surg Sports Traumatol Arthrosc. 2024;32(9):2258-66. doi:10.1002/ksa.12248. PubMed DOI

Niemeyer P, Angele P, Spiro RC, Kirner A, Gaissmaier C. Comparison of hydrogel-based autologous chondrocyte implantation versus microfracture: a propensity score matched-pair analysis. Orthop J Sports Med. 2023;11(8):23259671231193325. doi:10.1177/23259671231193325. PubMed PMC

Gaissmaier C, Angele P, Spiro RC, Köhler A, Kirner A, Niemeyer P. Hydrogel-based matrix-associated autologous chondrocyte implantation shows greater substantial clinical benefit at 24 months follow-up than microfracture: a propensity score matched-pair analysis. Cartilage. Epub 2024 Mar 19. doi:10.1177/19476035241235928. PubMed DOI PMC

Kon E, Di Martino A, Filardo G, Tetta C, Busacca M, Iacono F., et al.. Second-generation autologous chondrocyte transplantation: MRI findings and clinical correlations at a minimum 5-year follow-up. Eur J Radiol. 2011;79(3):382-8. doi:10.1016/j.ejrad.2010.04.002. PubMed DOI

Becher C, Zühlke D, Plaas C, Ewig M, Calliess T, Stukenborg-Colsman C, et al.. T2-mapping at 3 T after microfracture in the treatment of osteochondral defects of the talus at an average follow-up of 8 years. Knee Surg Sports Traumatol Arthrosc. 2015;23(8):2406-12. doi:10.1007/s00167-014-2913-9. PubMed DOI

Albano D, Martinelli N, Bianchi A, Giacalone A, Sconfienza LM. Evaluation of reproducibility of the MOCART score in patients with osteochondral lesions of the talus repaired using the autologous matrix-induced chondrogenesis technique. Radiol Med. 2017;122(12):909-17. doi:10.1007/s11547-017-0794-y. PubMed DOI

Casari FA, Germann C, Weigelt L, Wirth S, Viehöfer A, Ackermann J. The role of magnetic resonance imaging in autologous matrix-induced chondrogenesis for osteochondral lesions of the talus: analyzing MOCART 1 and 2.0. Cartilage. 2021;13(suppl 1):639S-645S. doi:10.1177/1947603519865308. PubMed DOI PMC

Wodzig MHH, Peters MJM, Emanuel KS, Van Hugten PPW, Wijnen W, Jutten LM., et al.. Minced autologous chondral fragments with fibrin glue as a simple promising one-step cartilage repair procedure: a clinical and MRI study at 12-month follow-up. Cartilage. 2022;13(4):19-31. doi:10.1177/19476035221126343. PubMed DOI PMC

Chung K, Jung M, Jang KM, Park SH, Nam BJ, Kim H, et al.. Particulated costal allocartilage with microfracture versus microfracture alone for knee cartilage defects: a multicenter, prospective, randomized, participant- and Rater-Blinded study. Orthop J Sports Med. 2023;11(7):23259671231185570. doi:10.1177/23259671231185570. PubMed DOI PMC

Welsch GH, Apprich S, Zbyn S, Mamisch TC, Mlynarik V, Scheffler K, et al.. Biochemical (T2, T2* and magnetisation transfer ratio) MRI of knee cartilage: feasibility at ultra-high field (7T) compared with high field (3T) strength. Eur Radiol. 2011;21(6):1136-43. doi:10.1007/s00330-010-2029-7. PubMed DOI

Welsch GH, Trattnig S, Hughes T, Quirbach S, Olk A, Blanke M, et al.. T2 and T2* mapping in patients after matrix-associated autologous chondrocyte transplantation: initial results on clinical use with 3.0-Tesla MRI. Eur Radiol. 2010;20(6):1515-23. doi:10.1007/s00330-009-1669-y. PubMed DOI

Janacova V, Szomolanyi P, Kirner A, Trattnig S, Juras V. Adjacent cartilage tissue structure after successful transplantation: a quantitative MRI study using T2 mapping and texture analysis. Eur Radiol. 2022;32(12):8364-75. doi:10.1007/s00330-022-08897-y. PubMed DOI PMC

Blackman AJ, Smith MV, Flanigan DC, Matava MJ, Wright RW, Brophy RH. Correlation between magnetic resonance imaging and clinical outcomes after cartilage repair surgery in the knee: a systematic review and meta-analysis. Am J Sports Med. 2013;41(6):1426-34. doi:10.1177/0363546513485931. PubMed DOI

Lansdown DA, Wang K, Cotter E, Davey A, Cole BJ. Relationship between quantitative MRI biomarkers and patient-reported outcome measures after cartilage repair surgery: a systematic review. Orthop J Sports Med. 2018;6(4):2325967118765448. doi:10.1177/2325967118765448. PubMed DOI PMC

de Windt TS, Welsch GH, Brittberg M, Vonk LA, Marlovits S, Trattnig S, et al.. Is magnetic resonance imaging reliable in predicting clinical outcome after articular cartilage repair of the knee? a systematic review and meta-analysis. Am J Sports Med. 2013;41(7):1695-702. doi:10.1177/0363546512473258. PubMed DOI

Niemeyer P, Laute V, Zinser W, Becher C, Kolombe T, Fay J, et al.. A prospective, randomized, open-label, multicenter, phase III noninferiority trial to compare the clinical efficacy of matrix-associated autologous chondrocyte implantation with spheroid technology versus arthroscopic microfracture for cartilage defects of the knee. Orthop J Sports Med. 2019;7(7):2325967119854442. doi:10.1177/2325967119854442. PubMed DOI PMC

Saris D, Price A, Widuchowski W, Bertrand-Marchand M, Caron J, Drogset JO, et al.. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: two-year follow-up of a prospective randomized trial. Am J Sports Med. 2014;42(6):1384-94. doi:10.1177/0363546514528093. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...