Characterization of Solid-State Complexities in Pharmaceutical Materials via Stimulated Raman Scattering Microscopy
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40302121
PubMed Central
PMC12079631
DOI
10.1021/acs.analchem.4c03163
Knihovny.cz E-resources
- MeSH
- Lactose * chemistry analysis MeSH
- Pharmaceutical Preparations chemistry MeSH
- Microscopy MeSH
- Nonlinear Optical Microscopy * methods MeSH
- Spectrum Analysis, Raman * methods MeSH
- Tablets chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Lactose * MeSH
- Pharmaceutical Preparations MeSH
- Tablets MeSH
In this study, we employed stimulated Raman scattering (SRS) microscopy, augmented with sum frequency generation, to characterize complex solid-state mixtures, containing many solid-state forms of the same compound, for the first time. Five crystalline forms and one amorphous form of lactose were characterized and resolved, including two more recently defined anhydrous solid-state forms. Additionally, the complex solid-state character of several commercially available pharmaceutical tableting and inhalation grades of lactose was profiled. The advanced multimodal label-free microscopy method enabled visualization of the distribution of the solid-state forms with submicron spatial resolution, including the detection of trace levels. In addition, quantitative solid-state compositions of the lactose products were estimated. Overall SRS microscopy allows sensitive and specific spatially resolved solid-state characterization of complex mixtures, beyond what is possible with established (nonspatially resolved) characterization methods.
Biomedicum Imaging Unit University of Helsinki Helsinki 00014 Finland
Department of Chemistry University of Helsinki Helsinki 00014 Finland
See more in PubMed
Rantanen J.; Rades T.; Strachan C. Solid-state analysis for pharmaceuticals: Pathways to feasible and meaningful analysis. J. Pharm. Biomed. Anal. 2023, 236, 115649.10.1016/j.jpba.2023.115649. PubMed DOI
Min W.; Freudiger C. W.; Lu S.; Xie X. S. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu. Rev. Phys. Chem. 2011, 62, 507–530. 10.1146/annurev.physchem.012809.103512. PubMed DOI PMC
Tipping W.; Lee M.; Serrels A.; Brunton V.; Hulme A. Stimulated Raman scattering microscopy: an emerging tool for drug discovery. Chem. Soc. Rev. 2016, 45 (8), 2075–2089. 10.1039/C5CS00693G. PubMed DOI PMC
Shen Y. Surface properties probed by second-harmonic and sum-frequency generation. Nature 1989, 337 (6207), 519–525. 10.1038/337519a0. DOI
Karttunen A.-P.; Junnila A.; Myöhänen E.; Harju E.; Xuan C.; Okuyucu I. ˙. N.; Heininen J.; Kivimäki S.; Harju V.; Julkunen M.; Vähäjärvi P.; Mikkonen K. S.; Tomberg T.; Moilanen U.; Strachan C. J.; Teppo J.; Tossavainen M.; Peltonen L. Use of dairy industry side-stream lactose for tablet manufacturing – proof of concept study. Int. J. Pharm. 2024, 660, 124354.10.1016/j.ijpharm.2024.124354. PubMed DOI
Figueroa B.; Nguyen T.; Sotthivirat S.; Xu W.; Rhodes T.; Lamm M. S.; Smith R. L.; John C. T.; Su Y.; Fu D. Detecting and quantifying microscale chemical reactions in pharmaceutical tablets by stimulated Raman scattering microscopy. Anal. Chem. 2019, 91 (10), 6894–6901. 10.1021/acs.analchem.9b01269. PubMed DOI
Sarri B.; Canonge R.; Audier X.; Lavastre V.; Pénarier G.; Alie J.; Rigneault H. Discriminating polymorph distributions in pharmaceutical tablets using stimulated Raman scattering microscopy. J. Raman Spectrosc. 2019, 50 (12), 1896–1904. 10.1002/jrs.5743. DOI
Novakovic D.; Saarinen J.; Rojalin T.; Antikainen O.; Fraser-Miller S. J.; Laaksonen T.; Peltonen L.; Isomäki A.; Strachan C. J. Multimodal nonlinear optical imaging for sensitive detection of multiple pharmaceutical solid-state forms and surface transformations. Anal. Chem. 2017, 89 (21), 11460–11467. 10.1021/acs.analchem.7b02639. PubMed DOI
Novakovic D.; Isomäki A.; Pleunis B.; Fraser-Miller S. J.; Peltonen L.; Laaksonen T.; Strachan C. J. Understanding dissolution and crystallization with imaging: A surface point of view. Mol. Pharmaceutics 2018, 15 (11), 5361–5373. 10.1021/acs.molpharmaceut.8b00840. PubMed DOI PMC
Hourigan J.; Lifran E. V.; Vu L. T.; Listiohadi Y.; Sleigh R. W.. Lactose: chemistry, processing, and utilization. In Advances in Dairy Ingredients; Wiley, 2013; pp 21–41.10.1002/9781118448205.ch2. DOI
Kirk J. H.; Dann S. E.; Blatchford C. Lactose: a definitive guide to polymorph determination. Int. J. Pharm. 2007, 334 (1–2), 103–114. 10.1016/j.ijpharm.2006.10.026. PubMed DOI
Guiry K. P.; Coles S. J.; Moynihan H. A.; Lawrence S. E. Effect of 1-deoxy-D-lactose upon the crystallization of D-lactose. Cryst. Growth Des. 2008, 8 (11), 3927–3934. 10.1021/cg070598n. DOI
Nicholls D.; Elleman C.; Shankland N.; Shankland K. A new crystalline form of αβ-d-lactose prepared by oven drying a concentrated aqueous solution of d-lactose. Acta Crystallogr., Sect. C: Struct. Chem. 2019, 75 (7), 904–909. 10.1107/S2053229619008210. PubMed DOI
Rowe R. C.; Sheskey P.; Quinn M.. Handbook of Pharmaceutical Excipients, 6th ed.; Pharmaceutical Press, 2009.
Janssen P. H.; Berardi A.; Kok J. H.; Thornton A. W.; Dickhoff B. H. The impact of lactose type on disintegration: An integral study on porosity and polymorphism. Eur. J. Pharm. Biopharm. 2022, 180, 251–259. 10.1016/j.ejpb.2022.10.012. PubMed DOI
Altamimi M. J.; Wolff K.; Nokhodchi A.; Martin G. P.; Royall P. G. Variability in the α and β anomer content of commercially available lactose. Int. J. Pharm. 2019, 555, 237–249. 10.1016/j.ijpharm.2018.10.061. PubMed DOI
Raghavan S.; Ristic R.; Sheen D.; Sherwood J.; Trowbridge L.; York P. Morphology of crystals of α-lactose hydrate grown from aqueous solution. J. Phys. Chem. B 2000, 104 (51), 12256–12262. 10.1021/jp002051o. DOI
Figura L.; Epple M. Anhydrous α-lactose A study with DSC and TXRD. J. Therm. Anal. Calorim. 1995, 44 (1), 45–53. 10.1007/BF02547132. DOI
Platteau C.; Lefebvre J.; Affouard F.; Derollez P. Ab initio structure determination of the hygroscopic anhydrous form of α-lactose by powder X-ray diffraction. Acta Crystallogr., Sect. B: Struct. Sci. 2004, 60 (4), 453–460. 10.1107/S0108768104014375. PubMed DOI
Allan M. C.; Grush E.; Mauer L. J. RH-temperature stability diagram of α-and β-anhydrous and monohydrate lactose crystalline forms. Food Res. Int. 2020, 127, 108717.10.1016/j.foodres.2019.108717. PubMed DOI
Drapier-Beche N.; Fanni J.; Parmentier M.; Vilasi M. Evaluation of lactose crystalline forms by nondestructive analysis. J. Dairy Sci. 1997, 80 (3), 457–463. 10.3168/jds.S0022-0302(97)75957-5. DOI
Hellerer T.; Enejder A. M.; Zumbusch A. Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses. Appl. Phys. Lett. 2004, 85 (1), 25–27. 10.1063/1.1768312. DOI
Zeytunyan A.; Baldacchini T.; Zadoyan R.. Module for multiphoton high-resolution hyperspectral imaging and spectroscopy. In Multiphoton Microscopy in the Biomedical Sciences XVIII; SPIE, 2018; Vol. 10498, pp 19–55.10.1117/12.2287943. DOI
Tomberg T.; Isomäki A.; Vainio M.; Metsälä M.; Saarinen J.; Strachan C. Multimodal nonlinear optical microscope for material and life sciences. Opt. Continuum 2024, 3 (10), 1918–1937. 10.1364/OPTCON.532676. DOI
Maggioni M.; Katkovnik V.; Egiazarian K.; Foi A. Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 2013, 22 (1), 119–133. 10.1109/TIP.2012.2210725. PubMed DOI
Lin H.; Lee H. J.; Tague N.; Lugagne J.-B.; Zong C.; Deng F.; Shin J.; Tian L.; Wong W.; Dunlop M. J.; et al. Microsecond fingerprint stimulated Raman spectroscopic imaging by ultrafast tuning and spatial-spectral learning. Nat. Commun. 2021, 12 (1), 3052.10.1038/s41467-021-23202-z. PubMed DOI PMC
Jawad R.; Elleman C.; Vermeer L.; Drake A. F.; Woodhead B.; Martin G. P.; Royall P. G. The measurement of the β/α anomer composition within amorphous lactose prepared by spray and freeze drying using a simple 1 H-NMR method. Pharm. Res. 2012, 29, 511–524. 10.1007/s11095-011-0575-6. PubMed DOI
Altamimi M.; Royall P.; Wolff K.; Martin G. An investigation of the anomeric stability of Lactose powder stored under high stress conditions. Pharm. Technol. 2017, 41 (3), 36–45.
Hirotsu K.; Shimada A. The crystal and molecular structure of β-lactose. Bull. Chem. Soc. Jpn. 1974, 47 (8), 1872–1879. 10.1246/bcsj.47.1872. DOI
Platteau C.; Lefebvre J.; Affouard F.; Willart J.-F.; Derollez P.; Mallet F. Structure determination of the stable anhydrous phase of α-lactose from X-ray powder diffraction. Acta Crystallogr., Sect. B: Struct. Sci. 2005, 61 (2), 185–191. 10.1107/S0108768105000455. PubMed DOI
Smith J. H.; Dann S. E.; Elsegood M. R.; Dale S. H.; Blatchford C. G. α-lactose monohydrate: a redetermination at 150 K. Acta Crystallogr., Sect. E:Struct. Rep. Online 2005, 61 (8), o2499–o2501. 10.1107/S1600536805021367. DOI
Barham A. S.; Hodnett B. K. In situ X-ray diffraction study of the crystallization of spray-dried lactose. Cryst. Growth Des. 2005, 5 (5), 1965–1970. 10.1021/cg050237c. DOI
Haque M. K.; Roos Y. H. Crystallization and X-ray diffraction of spray-dried and freeze-dried amorphous lactose. Carbohydr. Res. 2005, 340 (2), 293–301. 10.1016/j.carres.2004.11.026. PubMed DOI
Wiercigroch E.; Szafraniec E.; Czamara K.; Pacia M. Z.; Majzner K.; Kochan K.; Kaczor A.; Baranska M.; Malek K. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim. Acta, Part A 2017, 185, 317–335. 10.1016/j.saa.2017.05.045. PubMed DOI
Murphy B. M.; Prescott S. W.; Larson I. Measurement of lactose crystallinity using Raman spectroscopy. J. Pharm. Biomed. Anal. 2005, 38 (1), 186–190. 10.1016/j.jpba.2004.12.013. PubMed DOI
Shou J.; Ozeki Y. Dual-polarization hyperspectral stimulated Raman scattering microscopy. Appl. Phys. Lett. 2018, 113 (3), 033701.10.1063/1.5036832. DOI
Xu B.; Mao N.; Zhao Y.; Tong L.; Zhang J. Polarized Raman spectroscopy for determining crystallographic orientation of low-dimensional materials. J. Phys. Chem. Lett. 2021, 12 (31), 7442–7452. 10.1021/acs.jpclett.1c01889. PubMed DOI
Schmitt P. D.; Trasi N. S.; Taylor L. S.; Simpson G. J. Finding the needle in the haystack: characterization of trace crystallinity in a commercial formulation of paclitaxel protein-bound particles by Raman spectroscopy enabled by second harmonic generation microscopy. Mol. Pharmaceutics 2015, 12 (7), 2378–2383. 10.1021/acs.molpharmaceut.5b00065. PubMed DOI
DFE Pharma . Lactohale® 400 product brochure. 2022. https://dfepharma.com/excipients/lactohale-400/ (accessed Apr 01, 2024).
Handoko A.; Ian L.; Peter S. J. Influence of the polydispersity of the added fine lactose on the dispersion of salmeterol xinafoate from mixtures for inhalation. Eur. J. Pharm. Sci. 2009, 36 (2–3), 265–274. 10.1016/j.ejps.2008.10.001. PubMed DOI
Bungert N.; Kobler M.; Scherließ R. The role of intrinsic fines in the performance change of expired lactose carriers for DPI applications. Eur. J. Pharm. Biopharm. 2022, 175, 7–12. 10.1016/j.ejpb.2022.04.006. PubMed DOI
Zeng X. M.; Martin G. P.; Tee S.-K.; Marriott C. The role of fine particle lactose on the dispersion and deaggregation of salbutamol sulphate in an air stream in vitro. Int. J. Pharm. 1998, 176 (1), 99–110. 10.1016/S0378-5173(98)00300-7. DOI
Janssen P. H.; Bisharat L. M.; Bastiaansen M. Complexities related to the amorphous content of lactose carriers. Int. J. Pharm.: X 2023, 6, 100216.10.1016/j.ijpx.2023.100216. PubMed DOI PMC
Lerk C.; Andreae A.; De Boer A.; Bolhuis G.; Zuurman K.; De Hoog P.; Kussendrager K.; Van Leverink J. Increased binding capacity and flowability of α-lactose monohydrate after dehydration. J. Pharm. Pharmacol. 1983, 35 (11), 747–748. 10.1111/j.2042-7158.1983.tb02883.x. PubMed DOI
Bolhuis G. K.; de Waard H.. Compaction properties of directly compressible materials. In Pharmaceutical powder compaction technology; CRC Press, 2016; pp 157–218.
Li X. H.; Zhao L. J.; Ruan K. P.; Feng Y.; Xu D. S.; Ruan K. F. The application of factor analysis to evaluate deforming behaviors of directly compressed powders. Powder Technol. 2013, 247, 47–54. 10.1016/j.powtec.2013.06.040. DOI
Ilić I.; Kása Jr P.; Dreu R.; Pintye-Hódi K.; Srčič S. The compressibility and compactibility of different types of lactose. Drug Dev. Ind. Pharm. 2009, 35 (10), 1271–1280. 10.1080/03639040902932945. PubMed DOI
DFE Pharma . Process Flow Sheet for SuperTab® 14SD. 2024. https://dfepharma.com/excipients/supertab-14sd/ (accessed May 16, 2024).
Sebhatu T.; Elamin A. A.; Ahlneck C. Effect of moisture sorption on tabletting characteristics of spray dried (15% amorphous) lactose. Pharm. Res. 1994, 11, 1233–1238. 10.1023/A:1018973923831. PubMed DOI