Purification and activity enhancement of extracellular tyrosinase from a protease-silenced zygomycete Amylomyces rouxii strain
Status Publisher Language English Country United States Media print-electronic
Document type Journal Article
Grant support
172706
Consejo Nacional de Ciencia y Tecnología
PubMed
40316814
DOI
10.1007/s12223-025-01264-6
PII: 10.1007/s12223-025-01264-6
Knihovny.cz E-resources
- Keywords
- Amylomyces rouxii, Silencing, Tyrosinase partial purification, Zygomycetes,
- Publication type
- Journal Article MeSH
The intra- and extra-cellular monophenolase and diphenolase activities of the tyrosinase produced by Amylomyces rouxii were determined in submerged culture using Melin-Norkrans medium supplemented with 12.5 mg/L pentachlorophenol (PCP) and 0.1 g/L tyrosine. Maximal intracellular monophenolase activity was 180 U/mL while maximal extracellular monophenolase activity was 80 U/mL, both using p-cresol as substrate. For diphenolase, the highest intracellular activity was 2233 U/mL using 4-tert-butylcatechol (TBC) as substrate and extracellular diphenolase activity was 975 U/mL with catechol as substrate. The peak tyrosinase activity (mono- and diphenolase) was observed at 48 h of culture. The transformant A412-3 exhibited the highest extracellular activities, with a 2.14-fold increase in monophenolase and a 3.02-fold increase in diphenolase activity compared to the parental strain of A. rouxii. Additionally, it was confirmed that the enzyme secreted was in its active form. Extracellular tyrosinase from the transformant A412-3 was partially purified, achieving a purification factor of 10.6. SDS-PAGE analysis of partially purified tyrosinase revealed three bands of 40, 53, and 130 kDa. These bands were sequenced by LC-MS/MS, revealing eight peptides that showed similarity to tyrosinases from different fungi. It was determined that purified tyrosinase exhibited higher diphenolase activity than monophenolase activity, in line with previous studies on fungal tyrosinases.
See more in PubMed
Ba S, Kumar VV (2017) Recent developments in the use of tyrosinase and laccase in environmental applications. Crit Rev Biotechnol 37:819–832. https://doi.org/10.1080/07388551.2016.1261081 PubMed DOI
Bounegru AV, Apetrei C (2023) Tyrosinase immobilization strategies for the development of electrochemical biosensors-a review. Nanomaterials 13:760. https://doi.org/10.3390/nano13040760 PubMed DOI PMC
Cordero RJB, Casadevall A (2020) Melanin. Curr Biol 30:R142–R143. https://doi.org/10.1016/j.cub.2019.12.042 PubMed DOI
El-Shora HM, El-Sharkawy RM (2020) Tyrosinase from Penicillium chrysogenum: characterization and application in phenol removal from aqueous solution. J Gen Appl Microbiol 66:323–329. https://doi.org/10.2323/jgam.2020.01.002 PubMed DOI
Espín JC, Wichers HJ (1999) Kinetics of activation of latent mushroom (Agaricus bisporus) tyrosinase by benzyl alcohol. J Agric Food Chem 47:3503–3508. https://doi.org/10.1021/jf981334z PubMed DOI
Espín JC, Varon R, Fenoll LG, Gilabert MA, Garcia-Ruiz PA, Tudela J, Garcia-Canovas F (2000) Kinetic characterization of the substrate specificity and mechanism of mushroom tyrosinase. Eur J Biochem 267:1270–1279. https://doi.org/10.1046/j.1432-1327.2000.01013.x PubMed DOI
Fan Y, Flurkey WH (2004) Purification and characterization of tyrosinase from gill tissue of Portabella mushrooms. Phytochem 65:671–678. https://doi.org/10.1016/j.phytochem.2004.01.008 DOI
Fernandes MS, Kerkar S (2017) Microorganisms as a source of tyrosinase inhibitors: a review. Ann Microbiol 67:343–358. https://doi.org/10.1007/s13213-017-1261-7 DOI
Fujieda N, Yabutam S, Ikemdam T, Oyamam T, Murakim N, Kurisum G, Itohm S (2013) Crystal structures of copper-depleted and copper-bound fungal pro-tyrosinase: insights into endogenous cysteine-dependent copper incorporation. J Biol Chem 288:22128–22140. https://doi.org/10.1074/jbc.M113.477612 DOI
García-Molina P, García-Molina F, Teruel-Puche JA, Rodríguez-López JN, García-Cánovas F, Muñoz-Muñoz JL (2022) Considerations about the kinetic mechanism of tyrosinase in its action on monophenols: a review. Mol Catal 518:112072. https://doi.org/10.1016/j.mcat.2021.112072 DOI
Gasparetti C, Nordlund E, Jänis J, Buchert J, Kruus K (2012) Extracellular tyrosinase from the fungus Trichoderma reesei shows product inhibition and different inhibition mechanism from the intracellular tyrosinase from Agaricus bisporus. Biochim Biophy Acta: Proteins and Proteomics 1824:598–607. https://doi.org/10.1016/j.bbapap.2011.12.012 DOI
Gukasyan GS (1999) Effect of lignin on growth and tyrosinase activity of fungi from the genus Aspergillus. Biochem 64:223–227
Halaouli S, Mi A, Kruus K, Guo L, Hamid M, Sigoillot JC, Asther M, Lomascolo A (2005) Characterization of a new tyrosinase from Pycnoporus species with high potential food technological applications. J Appl Microbiol 98:332–343. https://doi.org/10.1111/j.1365-2672.2004.02481.x PubMed DOI
Halaouli S, Asther M, Sigoillot JC, Hamdi M, Lomascolo A (2006) Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J Appl Microbiol 100:219–232. https://doi.org/10.1111/j.1365-2672.2006.02866.x
Inamdar S, Joshi S, Bapat V, Jadhav J (2014) Purification and characterization of RNA allied extracellular tyrosinase from Aspergillus species. Appl Biochem Biotechnol 172:1183–1193. doi.org:// https://doi.org/10.1007/s12010-013-0555-x
Ioniţă E, Aprodu I, Stănciuc N, Râpeanu G, Bahrim G (2014) Advances in structure–function relationships of tyrosinase from Agaricus bisporus-Investigation on heat-induced conformational changes. Food Chem 156:129–136. https://doi.org/10.1016/j.foodchem.2014.01.089 PubMed DOI
Iqbal A, Murtaza A, Hu W, Ahmad I, Ahmad A, Xu X (2019) Activation and inactivation mechanisms of polyphenol oxidase during thermal and non-thermal methods of food processing. Food Bioprod Process 117:170–182. https://doi.org/10.1016/j.fbp.2019.07.006 DOI
Kanteev M, Goldfeder M, Fishman A (2015) Structure–function correlations in tyrosinases. Protein Sci 24:1360–1369. https://doi.org/10.1002/pro.2734 PubMed DOI PMC
Kawamura-Konishi Y, Tsuji M, Hatana S, Asanuma M, Kakuta D, Kawano T, Mukoyama EB (2007) Purification, characterization, and molecular cloning of tyrosinase from Pholiota nameko. Biosci Biotechnol Biochem 71:1752–1760. https://doi.org/10.1271/bbb.70171 PubMed DOI
Khan MF, Hof C, Niemcová P, Murphy CD (2023) Recent advances in fungal xenobiotic metabolism: enzymes and applications. World J Microbiol Biotechnol 39:296. https://doi.org/10.1007/s11274-023-03737-7 PubMed DOI PMC
Kim GY, Shim J, Kang MS, Moon SH (2008) Optimized coverage of gold nanoparticles at tyrosinase electrode for measurement of a pesticide in various water samples. J Hazard Mat 165:141–147. https://doi.org/10.1016/j.jhazmat.2007.12.007 DOI
Labus K, Wiśniewski Ł, Cieńska M, Bryjak J (2020) Effectivity of tyrosinase purification by membrane techniques versus fractionation by salting out. Chem Papers 74:2267–2275. https://doi.org/10.1007/s11696-020-01060-1 DOI
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0 PubMed DOI
León-Santiesteban H, Bernal R, Fernández FJ, Tomasini A (2008) Tyrosinase and peroxidase production by a Rhizopus oryzae strain ENHE obtained from pentachlorophenol contaminated soil. J Chem Technol Biotechnol 83:1394–1400. https://doi.org/10.1002/jctb.1955 DOI
Li Y, Deng B, Yang S, Tian H, Sun B (2021) A colorimetric fluorescent probe for the detection of tyrosinase and its application for the food industry. J Photochem Photobiolog a: Chemistry 419:113458. https://doi.org/10.1016/j.jphotochem.2021.113458 DOI
Lopez-Tejedor D, Palomo JM (2018) Efficient purification of a highly active H-subunit of tyrosinase from Agaricus bisporus. Protein Expres Purific 145:64–70. https://doi.org/10.1016/j.pep.2018.01.001 DOI
Marcial-Quino J, Fierro F, Fernández FJ, Montiel-González AM, Sierra-Palacios E, Tomasini A (2023) Silencing of Amylomyces rouxii aspartic II protease by siRNA to increase tyrosinase activity. Fungal Biol 127:1415–1425. https://doi.org/10.1016/j.funbio.2023.10.004 PubMed DOI
Mayer AM (2006) Polyphenol oxidases in plants and fungi: going places? A review. Phytochem 67:2318–2331. https://doi.org/10.1016/j.phytochem.2006.08.006 DOI
Mazzocco F, Pefferi PG (1976) An improvement of the spectrophotometric method for the determination of tyrosinase catecholase activity by hydrazone. Anal Biochem 72:643–647. https://doi.org/10.1016/0003-2697(76)90578-9 PubMed DOI
McLarin MA, Leung IKH (2020) Substrate specificity of polyphenol oxidase. Crit Rev Biochem Mol Biol 55:274–308. https://doi.org/10.1080/10409238.2020.1768209 PubMed DOI
Min K, Park GW, Yoo YJ, Lee JS (2019) A perspective on the biotechnological applications of the versatile tyrosinase. Bioresour Technol 289:121730. https://doi.org/10.1016/j.biortech.2019.121730 PubMed DOI
Montiel AM, Fernández FJ, Marcial J, Soriano J, Barrios-González J, Tomasini A (2004) A fungal phenoloxidase (tyrosinase) involved in pentachlorophenol degradation. Biotechnol Lett 26:1353–1357. https://doi.org/10.1023/B:BILE.0000045632.36401.86 PubMed DOI
Nawaz A, Shafi T, Khaliq A, Mukhtar H, ul Hag I, (2017) Tyrosinase: sources, structure and applications. Int J Biotech Bioeng 3:142–148. https://doi.org/10.25141/2475-3432-2017-5.0135 DOI
Nunes CS, Vogel K (2018) Tyrosinases-physiology, pathophysiology, and applications. In: Nunes CS, Kumar, V (eds) Enzymes in human and animal nutrition. Academic Press, pp. 403–412. https://doi.org/10.1016/B978-0-12-805419-2.00020-4
Rodriguez-López JN, Escribano J, García-Cánovas F (1994) A continuous spectrophotometric method for determination of monophenolase activity of tyrosinase using 3-methil-2-benzothiazolinone hidrazone. Anal Biochem 216:2005–2010. https://doi.org/10.1006/abio.1994.1026 DOI
Salah Maamoun H, Rabie GH, Shaker I, Alaidaroos BA, El-Sayedn ASA (2021) Biochemical properties of tyrosinase from Aspergillus terreus and Penicillium copticola; undecanoic acid from Aspergillus flavus, an endophyte of Moringa oleifera, is a novel potent tyrosinase inhibitor. Molecules 26:1309. https://doi.org/10.3390/molecules26051309 PubMed DOI PMC
Sato T, Kanda K, Okawa K, Takahashi M, Watanabe H, Hirano T, Yaegashi K, Sakamoto Y, Uchimiya H (2009) The tyrosinase-encoding gene of Lentinula edodes, Letyr, is abundantly expressed in the gills of the fruit-body during post-harvest preservation. Biosci Biotechnol Biochem 73:1042–1047. https://doi.org/10.1271/bbb.80810 PubMed DOI
Selinheimo E, Saloheimo M, Ahola E, Westerholm-Parvinen A, Kalkkinen N, Buchert J, Kruus K (2006) Production and characterization of a secreted, C-terminally processed tyrosinase from the filamentous fungus Trichoderma reesei. FEBS J 273:4322–4335. https://doi.org/10.1111/j.1742-4658.2006.05429.x PubMed DOI
Selinheimo A, NiEidhin D, Steffensen C, Nielsen J, Lomascolo A, Halaouli S, Record E, O´Beirne D, Buchert J, Kruus K, (2007) Comparison of the characteristics of fungal and plant tyrosinase. J Biotechnol 130:471–480. https://doi.org/10.1016/j.jbiotec.2007.05.018 PubMed DOI
Selinheimo E, Gasparetti C, Mattinen ML, Steffensen CL, Buchert J, Kruus K (2009) Comparison of substrate specificity of tyrosinase from Trichoderma reesei and Agaricus bisporus. Enzyme Microb Technol 44:1–10. https://doi.org/10.1016/j.enzmictec.2008.09.013 DOI
Sharma S, Bhatt K, Shrivastava R, Kumar NA (2023) Tyrosinase and oxygenases: fundamentals and applications. In Brahmachari G (ed) Biotechnology of microbial enzymes (second edition). Production, Biocatalysis, and Industrial Applications. Academic Press, pp. 323–340. https://doi.org/10.1016/B978-0-443-19059-9.00014-1
Tomasini A, Villareal-Arellanos HR, Barrios-González J (1996) Resistencia de una cepa de Rhizopus sp. al crecer en medios conteniendo pentaclorofenol. Avances Ing Quim 6:36–40
Tomasini A, Flores V, Cortés D, Barrios-González J (2001) An isolate of Rhizopus nigricans capable of tolerating and removing pentachlorophenol. World J Microbiol Biotechnol 17:201–205. https://doi.org/10.1023/A:1016694720608 DOI
Wang HT, Liu W-y, Ulbrich N (1995) Isolation and characterization of a tyrosinase from the skin of the white silky fowl (Gallina laninera) employing copper saturated diethylaminoethyl-cellulose. Biochim Biophys Acta 1243:251–255. https://doi.org/10.1016/0304-4165(94)00136-l PubMed DOI
Wichers HJ, Gerristein YAM, Chapelon CGJ (1996) Tyrosinase isoforms from the fruitbodies of Agaricus bisporus. Phytochem 43:333–337. https://doi.org/10.1016/0031-9422(96)00309-3 DOI
Winder AJ, Harris H (1991) New assays for the tyrosine hydroxylase and dopa oxidase activities of tyrosinase. Eur J Biochem 198:317–326. https://doi.org/10.1111/j.1432-1033.1991.tb16018.x PubMed DOI
Yoshimoto O, T, Yamamoto K. Tsuru D, (1985) Extracellular tyrosinase from Streptomyces sp. KY-453: purification and some enzymatic properties. The J Biochemistry 97:1747–1754 DOI
Zhang X, Van Leeuwen J, Wichers HJ, Flurkey WH (1999) Characterization of tyrosinase from the cap flesh of Portabella mushrooms. J Agric Food Chem 47:374–378. https://doi.org/10.1021/jf980874t PubMed DOI
Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA (2019) A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem 34:279–309. https://doi.org/10.1080/14756366.2018.1545767 PubMed DOI PMC
Zolghadri S, Beygi M, Mohammad TF, Alijanianzadeh M, Pillaiyar T, Garcia-Molina P, Garcia-Canovas F, Saboury M-M, AA, (2023) Targeting tyrosinase in hyperpigmentation: current status, limitations and future promises. Biochem Pharmacolog 212:15574. https://doi.org/10.1016/j.bcp.2023.115574 DOI
Zou Y, Hu W, Jiang A, Ma K (2014) Partial purification and characterization of a novel extracellular tyrosinase from Auricularia auricula. Appl Biochem Biotechnol 172:1460–1469. https://doi.org/10.1007/s12010-013-0638-8 PubMed DOI