The impact of quantum circuit architecture and hyperparameters on variational quantum algorithms exemplified in the electronic structure of the GaAs crystal
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
Praemium Academiae
Akademie Věd České Republiky
Praemium Academiae
Akademie Věd České Republiky
Praemium Academiae
Akademie Věd České Republiky
PubMed
40328829
PubMed Central
PMC12056000
DOI
10.1038/s41598-025-00151-x
PII: 10.1038/s41598-025-00151-x
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Variational Quantum Algorithms (VQAs) provide a promising framework for solving electronic structure problems using the computational capabilities of quantum computers to explore high-dimensional Hilbert spaces efficiently. This research investigates the performance of VQAs in electronic structure calculations of gallium arsenide (GaAs), a semiconductor with a zinc-blende structure. Utilizing a tight-binding Hamiltonian and a Jordan-Wigner-like transformation, we map the problem to a 10-qubit Hamiltonian. We analyze the impact of quantum circuit architectures, algorithm hyperparameters, and optimization methods on two VQAs: Variational Quantum Deflation (VQD) and Subspace Search Variational Quantum Eigensolver (SSVQE). We observed that while both algorithms offer promising results, the choice of ansatz and hyperparameter tuning were especially critical in achieving reliable outcomes, particularly for higher energy states. Adjusting the hyperparameters in VQD significantly enhanced the accuracy of higher energy state calculations, reducing the error by an order of magnitude, whereas tuning the hyperparameters in SSVQE had minimal impact. Our findings provide insights into optimizing VQAs for electronic structure problems, paving the way for their application to more complex systems on near-term quantum devices.
See more in PubMed
Cao, Y. et al. Quantum chemistry in the age of quantum computing. Chem. Rev.119, 10856. 10.1021/acs.chemrev.8b00803 (2019). PubMed
Bauer, B., Bravyi, S., Motta, M. & Chan, G.K.-L. Quantum algorithms for quantum chemistry and quantum materials science. Chem. Rev.120, 12685. 10.1021/acs.chemrev.9b00829 (2020). PubMed
de Leon, N. P. et al. Materials challenges and opportunities for quantum computing hardware. Science10.1126/science.abb2823 (2021). PubMed
Stanisic, S. et al. Observing ground-state properties of the fermi-hubbard model using a scalable algorithm on a quantum computer. Nat. Comm.13, 5743. 10.1038/s41467-022-33335-4 (2022). PubMed PMC
Wecker, D., Hastings, M. B. & Troyer, M. Progress towards practical quantum variational algorithms. Phys. Rev. A92, 042303. 10.1103/PhysRevA.92.042303 (2015).
Lischka, H. et al. Multireference approaches for excited states of molecules. Chem. Rev.118, 7293. 10.1021/acs.chemrev.8b00244 (2018). PubMed
Schuch, N. & Verstraete, F. Computational complexity of interacting electrons and fundamental limitations of density functional theory. Nat. Phys.5, 732. 10.1038/nphys1370 (2009).
Burke, K. Perspective on density functional theory. J. Chem. Phys.136, 150901. 10.1063/1.4704546 (2012). PubMed
Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science309, 1704. 10.1126/science.1113479 (2005). PubMed
Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun.5, 4213. 10.1038/ncomms5213 (2014). PubMed PMC
Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature549, 242. 10.1038/nature23879 (2017). PubMed
Higgott, O., Wang, D. & Brierley, S. Variational quantum computation of excited states. Quantum3, 156. 10.22331/q-2019-07-01-156 (2019).
Nakanishi, K. M., Mitarai, K. & Fujii, K. Subspace-search variational quantum eigensolver for excited states. Phys. Rev. Res.1, 033062. 10.1103/PhysRevResearch.1.033062 (2019).
Sherbert, K., Cerasoli, F. & Buongiorno Nardelli, M. A systematic variational approach to band theory in a quantum computer. RSC Adv.11, 39438. 10.1039/D1RA07451B (2021). PubMed PMC
Vogl, P., Hjalmarson, H. P. & Dow, J. D. A semi-empirical tight-binding theory of the electronic structure of semiconductors. J. Phys. Chem. Solids44, 365. 10.1016/0022-3697(83)90064-1 (1983).
Barkoutsos, P. K. et al. Quantum algorithms for electronic structure calculations: Particle-hole hamiltonian and optimized wave-function expansions. Phys. Rev. A98, 022322. 10.1103/PhysRevA.98.022322 (2018).
Gard, B. T. et al. Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm. npj Quantum Inf.6, 10. 10.1038/s41534-019-0240-1 (2020).
Uvarov, A. V., Kardashin, A. S. & Biamonte, J. D. Machine learning phase transitions with a quantum processor. Phys. Rev. A102, 012415. 10.1103/PhysRevA.102.012415 (2020).
Qiskit: An open-source framework for quantum computing. https://www.ibm.com/quantum/qiskit/ Accessed on 18 May 2024 (2024).
Bierman, J. Ssvqe. https://github.com/JoelHBierman/SSVQE/ Accessed on 18 May 2024 (2024).
Ďuriška, M., Miháliková, I. & Friák, M. Quantum computing of the electronic structure of crystals by the variational quantum deflation algorithm. Physica Scripta accepted10.1088/1402-4896/adbb29 (2025).
Carlo, A. D. Microscopic theory of nanostructured semiconductor devices: beyond the envelope-function approximation. Semicond. Sci. Technol.10.1088/0268-1242/18/1/201 (2003).