High-Resolution Correlative Microscopy Approach for Nanobio Interface Studies of Nanoparticle-Induced Lung Epithelial Cell Damage
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40340330
PubMed Central
PMC12096433
DOI
10.1021/acsnano.4c17838
Knihovny.cz E-resources
- Keywords
- TiO2 nanotubes, correlated light and electron microscopy, helium ion microscopy, lung epithelium inflammation, nanobio interface, synchrotron micro X-ray fluorescence,
- MeSH
- Epithelial Cells * drug effects pathology MeSH
- Microscopy, Fluorescence MeSH
- Humans MeSH
- Nanoparticles * chemistry toxicity MeSH
- Nanotubes chemistry MeSH
- Lung * drug effects pathology cytology MeSH
- Titanium * chemistry toxicity MeSH
- Particle Size MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Titanium * MeSH
- titanium dioxide MeSH Browser
Correlated light and electron microscopy (CLEM) has become essential in life sciences due to advancements in imaging resolution, sensitivity, and sample preservation. In nanotoxicology─specifically, studying the health effects of particulate matter exposure─CLEM can enable molecular-level structural as well as functional analysis of nanoparticle interactions with lung tissue, which is key for the understanding of modes of action. In our study, we implement an integrated high-resolution fluorescence lifetime imaging microscopy (FLIM) and hyperspectral fluorescence imaging (fHSI), scanning electron microscopy (SEM), ultrahigh resolution helium ion microscopy (HIM) and synchrotron micro X-ray fluorescence (SR μXRF), to characterize the nanobio interface and to better elucidate the modes of action of lung epithelial cells response to known inflammatory titanium dioxide nanotubes (TiO2 NTs). Morpho-functional assessment uncovered several mechanisms associated with extensive DNA, essential minerals, and iron accumulation, cellular surface immobilization, and the localized formation of fibrous structures, all confirming immunomodulatory responses. These findings advance our understanding of the early cellular processes leading to inflammation development after lung epithelium exposure to these high-aspect-ratio nanoparticles. Our high-resolution experimental approach, exploiting light, ion, and electron sources, provides a robust framework for future research into nanoparticle toxicity and its impact on human health.
Elettra Sincrotrone Trieste Strada Statale 14 km 163 5 in AREA Science Park Trieste 34149 Italy
Jožef Stefan Institute Jamova cesta 39 1000 Ljubljana Slovenia
See more in PubMed
Correlative Light and Electron Microscopy IV, Volume 162 - 1st Edition. In Methods in Cell Biology; Reichert, T. M. ; Verkade, P. , Eds.; Academic Press: 2021; pp 2–430.
Ando T., Bhamidimarri S. P., Brending N., Colin-York H., Collinson L., Jonge N. D., Pablo P. J. de, Debroye E., Eggeling C., Franck C., Fritzsche M., Gerritsen H., Giepmans B. N. G., Grunewald K., Hofkens J., Hoogenboom J. P., Janssen K. P. F., Kaufmann R., Klumperman J., Kurniawan N.. et al. The 2018 Correlative Microscopy Techniques Roadmap. J. Phys. D: Appl. Phys. 2018;51(44):443001. doi: 10.1088/1361-6463/aad055. PubMed DOI PMC
Datta R., Heaster T. M., Sharick J. T., Gillette A. A., Skala M. C.. Fluorescence Lifetime Imaging Microscopy: Fundamentals and Advances in Instrumentation, Analysis, and Applications. J. Biomed Opt. 2020;25(7):1–43. doi: 10.1117/1.JBO.25.7.071203. PubMed DOI PMC
Sekar R. B., Periasamy A.. Fluorescence Resonance Energy Transfer (FRET) Microscopy Imaging of Live Cell Protein Localizations. J. Cell Biol. 2003;160(5):629–633. doi: 10.1083/jcb.200210140. PubMed DOI PMC
Varsano N., Wolf S. G.. Electron Microscopy of Cellular Ultrastructure in Three Dimensions. Curr. Opin. Struct. Biol. 2022;76:102444. doi: 10.1016/j.sbi.2022.102444. PubMed DOI
Nuñez J., Renslow R., Cliff J. B., Anderton C. R.. NanoSIMS for Biological Applications: Current Practices and Analyses. Biointerphases. 2017;13(3):03B301. doi: 10.1116/1.4993628. PubMed DOI
De Samber B., De Rycke R., De Bruyne M., Kienhuis M., Sandblad L., Bohic S., Cloetens P., Urban C., Polerecky L., Vincze L.. Effect of Sample Preparation Techniques upon Single Cell Chemical Imaging: A Practical Comparison between Synchrotron Radiation Based X-Ray Fluorescence (SR-XRF) and Nanoscopic Secondary Ion Mass Spectrometry (Nano-SIMS) Anal. Chim. Acta. 2020;1106:22–32. doi: 10.1016/j.aca.2020.01.054. PubMed DOI
Manisalidis I., Stavropoulou E., Stavropoulos A., Bezirtzoglou E.. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health. 2020;8:14. doi: 10.3389/fpubh.2020.00014. PubMed DOI PMC
Moreno-Ríos A. L., Tejeda-Benítez L. P., Bustillo-Lecompte C. F.. Sources, Characteristics, Toxicity, and Control of Ultrafine Particles: An Overview. Geoscience Frontiers. 2022;13(1):101147. doi: 10.1016/j.gsf.2021.101147. DOI
Hill W., Lim E. L., Weeden C. E., Lee C., Augustine M., Chen K., Kuan F.-C., Marongiu F., Evans E. J., Moore D. A., Rodrigues F. S., Pich O., Bakker B., Cha H., Myers R., van Maldegem F., Boumelha J., Veeriah S., Rowan A., Naceur-Lombardelli C.. et al. Lung Adenocarcinoma Promotion by Air Pollutants. Nature. 2023;616(7955):159–167. doi: 10.1038/s41586-023-05874-3. PubMed DOI PMC
You D. J., Bonner J. C.. Susceptibility Factors in Chronic Lung Inflammatory Responses to Engineered Nanomaterials. Int. J. Mol. Sci. 2020;21(19):7310. doi: 10.3390/ijms21197310. PubMed DOI PMC
Kempen P. J., Kircher M. F., de la Zerda A., Zavaleta C. L., Jokerst J. V., Mellinghoff I. K., Gambhir S. S., Sinclair R.. A Correlative Optical Microscopy and Scanning Electron Microscopy Approach to Locating Nanoparticles in Brain Tumors. Micron. 2015;68:70–76. doi: 10.1016/j.micron.2014.09.004. PubMed DOI PMC
Han S., Raabe M., Hodgson L., Mantell J., Verkade P., Lasser T., Landfester K., Weil T., Lieberwirth I.. High-Contrast Imaging of Nanodiamonds in Cells by Energy Filtered and Correlative Light-Electron Microscopy: Toward a Quantitative Nanoparticle-Cell Analysis. Nano Lett. 2019;19(3):2178–2185. doi: 10.1021/acs.nanolett.9b00752. PubMed DOI PMC
Hayashi Y., Takamiya M., Jensen P. B., Ojea-Jiménez I., Claude H., Antony C., Kjaer-Sorensen K., Grabher C., Boesen T., Gilliland D., Oxvig C., Strähle U., Weiss C.. Differential Nanoparticle Sequestration by Macrophages and Scavenger Endothelial Cells Visualized in Vivo in Real-Time and at Ultrastructural Resolution. ACS Nano. 2020;14(2):1665–1681. doi: 10.1021/acsnano.9b07233. PubMed DOI
García-Serradilla M., Risco C.. Light and Electron Microscopy Imaging Unveils New Aspects of the Antiviral Capacity of Silver Nanoparticles in Bunyavirus-Infected Cells. Virus Research. 2021;302:198444. doi: 10.1016/j.virusres.2021.198444. PubMed DOI
Kopek B. G., Paez-Segala M. G., Shtengel G., Sochacki K. A., Sun M. G., Wang Y., Xu C. S., van Engelenburg S. B., Taraska J. W., Looger L. L., Hess H. F.. Diverse Protocols for Correlative Super-Resolution Fluorescence Imaging and Electron Microscopy of Chemically Fixed Samples. Nat. Protoc. 2017;12(5):916–946. doi: 10.1038/nprot.2017.017. PubMed DOI PMC
Gallagher-Jones M., Dias C. S. B., Pryor A., Bouchmella K., Zhao L., Lo Y. H., Cardoso M. B., Shapiro D., Rodriguez J., Miao J.. Correlative Cellular Ptychography with Functionalized Nanoparticles at the Fe L-Edge. Sci. Rep. 2017;7:4757. doi: 10.1038/s41598-017-04784-5. PubMed DOI PMC
Liu M., Li Q., Liang L., Li J., Wang K., Li J., Lv M., Chen N., Song H., Lee J., Shi J., Wang L., Lal R., Fan C.. Real-Time Visualization of Clustering and Intracellular Transport of Gold Nanoparticles by Correlative Imaging. Nat. Commun. 2017;8(1):15646. doi: 10.1038/ncomms15646. PubMed DOI PMC
Bhat S. V., Sultana T., Körnig A., McGrath S., Shahina Z., Dahms T. E. S.. Correlative Atomic Force Microscopy Quantitative Imaging-Laser Scanning Confocal Microscopy Quantifies the Impact of Stressors on Live Cells in Real-Time. Sci. Rep. 2018;8(1):8305. doi: 10.1038/s41598-018-26433-1. PubMed DOI PMC
Lo Giudice C., Yang J., Poncin M. A., Adumeau L., Delguste M., Koehler M., Evers K., Dumitru A. C., Dawson K. A., Alsteens D.. Nanophysical Mapping of Inflammasome Activation by Nanoparticles via Specific Cell Surface Recognition Events. ACS Nano. 2022;16(1):306–316. doi: 10.1021/acsnano.1c06301. PubMed DOI
Mi Z., Chen C.-B., Tan H. Q., Dou Y., Yang C., Turaga S. P., Ren M., Vajandar S. K., Yuen G. H., Osipowicz T., Watt F., Bettiol A. A.. Quantifying Nanodiamonds Biodistribution in Whole Cells with Correlative Iono-Nanoscopy. Nat. Commun. 2021;12(1):4657. doi: 10.1038/s41467-021-25004-9. PubMed DOI PMC
Le Trequesser Q., Devès G., Saez G., Daudin L., Barberet P., Michelet C., Delville M.-H., Seznec H.. Single Cell In Situ Detection and Quantification of Metal Oxide Nanoparticles Using Multimodal Correlative Microscopy. Anal. Chem. 2014;86(15):7311–7319. doi: 10.1021/ac501318c. PubMed DOI
Podlipec R., Punzón-Quijorna E., Pirker L., Kelemen M., Vavpetič P., Kavalar R., Hlawacek G., Štrancar J., Pelicon P., Fokter S. K.. Revealing Inflammatory Indications Induced by Titanium Alloy Wear Debris in Periprosthetic Tissue by Label-Free Correlative High-Resolution Ion, Electron and Optical Microspectroscopy. Materials. 2021;14(11):3048. doi: 10.3390/ma14113048. PubMed DOI PMC
Quintana C., Wu T.-D., Delatour B., Dhenain M., Guerquin-Kern J. L., Croisy A.. Morphological and Chemical Studies of Pathological Human and Mice Brain at the Subcellular Level: Correlation between Light, Electron, and Nanosims Microscopies. Microsc. Res. Tech. 2007;70(4):281–295. doi: 10.1002/jemt.20403. PubMed DOI
Audinot J.-N., Georgantzopoulou A., Piret J.-P., Gutleb A. C., Dowsett D., Migeon H. N., Hoffmann L.. Identification and Localization of Nanoparticles in Tissues by Mass Spectrometry. Surf. Interface Anal. 2013;45(1):230–233. doi: 10.1002/sia.5099. DOI
Vollnhals F., Audinot J.-N., Wirtz T., Mercier-Bonin M., Fourquaux I., Schroeppel B., Kraushaar U., Lev-Ram V., Ellisman M. H., Eswara S.. Correlative Microscopy Combining Secondary Ion Mass Spectrometry and Electron Microscopy: Comparison of Intensity–Hue–Saturation and Laplacian Pyramid Methods for Image Fusion. Anal. Chem. 2017;89(20):10702–10710. doi: 10.1021/acs.analchem.7b01256. PubMed DOI
Lovric J., Audinot J.-N., Wirtz T.. In Situ Correlative Helium Ion Microscopy and Secondary Ion Mass Spectrometry for High-Resolution Nano-Analytics in Life Sciences. Microscopy and Microanalysis. 2019;25(S2):1026–1027. doi: 10.1017/S1431927619005865. DOI
Biesemeier A., Castro O. D., Serralta E., Lovric J., Eswara S., Audinot J.-N., Cambier S., Wirtz T.. Correlative Electron Microscopy, High Resolution Ion Imaging and Secondary Ion Mass Spectrometry for High Resolution Nanoanalytics on Biological Tissue. Microscopy and Microanalysis. 2020;26(S2):818–820. doi: 10.1017/S1431927620015950. DOI
De Castro O., Biesemeier A., Serralta E., Bouton O., Barrahma R., Hoang Q. H., Cambier S., Taubitz T., Klingner N., Hlawacek G., Pinto S. D., Gnauck P., Lucas F., Bebeacua C., Wirtz T.. npSCOPE: A New Multimodal Instrument for In Situ Correlative Analysis of Nanoparticles. Anal. Chem. 2021;93(43):14417–14424. doi: 10.1021/acs.analchem.1c02337. PubMed DOI
Le Trequesser Q., Saez G., Simon M., Devès G., Daudin L., Barberet P., Michelet C., Delville M.-H., Seznec H.. Multimodal Correlative Microscopy for in Situ Detection and Quantification of Chemical Elements in Biological Specimens. Applications to Nanotoxicology. J. Chem. Biol. 2015;8(4):159–167. doi: 10.1007/s12154-015-0133-5. DOI
James S. A., Feltis B. N., de Jonge M. D., Sridhar M., Kimpton J. A., Altissimo M., Mayo S., Zheng C., Hastings A., Howard D. L., Paterson D. J., Wright P. F. A., Moorhead G. F., Turney T. W., Fu J.. Quantification of ZnO Nanoparticle Uptake, Distribution, and Dissolution within Individual Human Macrophages. ACS Nano. 2013;7(12):10621–10635. doi: 10.1021/nn403118u. PubMed DOI
Tardillo Suárez V., Gallet B., Chevallet M., Jouneau P.-H., Tucoulou R., Veronesi G., Deniaud A.. Correlative Transmission Electron Microscopy and High-Resolution Hard X-Ray Fluorescence Microscopy of Cell Sections to Measure Trace Element Concentrations at the Organelle Level. J. Struct. Biol. 2021;213(3):107766. doi: 10.1016/j.jsb.2021.107766. PubMed DOI
Malucelli E., Iotti S., Gianoncelli A., Fratini M., Merolle L., Notargiacomo A., Marraccini C., Sargenti A., Cappadone C., Farruggia G., Bukreeva I., Lombardo M., Trombini C., Maier J. A., Lagomarsino S.. Quantitative Chemical Imaging of the Intracellular Spatial Distribution of Fundamental Elements and Light Metals in Single Cells. Anal. Chem. 2014;86(10):5108–5115. doi: 10.1021/ac5008909. PubMed DOI
Perrin L., Carmona A., Roudeau S., Ortega R.. Evaluation of Sample Preparation Methods for Single Cell Quantitative Elemental Imaging Using Proton or Synchrotron Radiation Focused Beams. J. Anal. At. Spectrom. 2015;30(12):2525–2532. doi: 10.1039/C5JA00303B. DOI
Jobim P. F. C., Iochims dos Santos C. E., Dias J. F., Kelemen M., Pelicon P., Mikuš K. V., Pascolo L., Gianoncelli A., Bedolla D. E., Rasia-Filho A. A.. Human Neocortex Layer Features Evaluated by PIXE, STIM, and STXM Techniques. Biol. Trace Elem Res. 2023;201(2):592–602. doi: 10.1007/s12011-022-03182-x. PubMed DOI
Pongrac P., Vogel-Mikuš K., Jeromel L., Vavpetič P., Pelicon P., Kaulich B., Gianoncelli A., Eichert D., Regvar M., Kreft I.. Spatially Resolved Distributions of the Mineral Elements in the Grain of Tartary Buckwheat (Fagopyrum Tataricum) Food Research International. 2013;54(1):125–131. doi: 10.1016/j.foodres.2013.06.020. DOI
Bischof J., Fletcher G., Verkade P., Kuntner C., Fernandez-Rodriguez J., Chaabane L., Rose L. A., Walter A., Vandenbosch M., van Zandvoort M. A. M. J., Zaritsky A., Keppler A., Parsons M.. Multimodal Bioimaging across Disciplines and Scales: Challenges, Opportunities and Breaking down Barriers. npj Imaging. 2024;2(1):5. doi: 10.1038/s44303-024-00010-w. DOI
Oberdörster G., Maynard A., Donaldson K., Castranova V., Fitzpatrick J., Ausman K., Carter J., Karn B., Kreyling W., Lai D., Olin S., Monteiro-Riviere N., Warheit D., Yang H.. et al. A report from the ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group. Principles for Characterizing the Potential Human Health Effects from Exposure to Nanomaterials: Elements of a Screening Strategy. Part. Fibre Toxicol. 2005;2(1):8. doi: 10.1186/1743-8977-2-8. PubMed DOI PMC
Kokot H., Kokot B., Sebastijanović A., Voss C., Podlipec R., Zawilska P., Berthing T., Ballester-López C., Danielsen P. H., Contini C., Ivanov M., Krišelj A., Čotar P., Zhou Q., Ponti J., Zhernovkov V., Schneemilch M., Doumandji Z., Pušnik M., Umek P., Pajk S.. et al. Prediction of Chronic Inflammation for Inhaled Particles: The Impact of Material Cycling and Quarantining in the Lung Epithelium. Adv. Mater. 2020;32(47):2003913. doi: 10.1002/adma.202003913. PubMed DOI
Danielsen P. H., Knudsen K. B., Štrancar J., Umek P., Koklič T., Garvas M., Vanhala E., Savukoski S., Ding Y., Madsen A. M., Jacobsen N. R., Weydahl I. K., Berthing T., Poulsen S. S., Schmid O., Wolff H., Vogel U.. Effects of Physicochemical Properties of TiO2 Nanomaterials for Pulmonary Inflammation, Acute Phase Response and Alveolar Proteinosis in Intratracheally Exposed Mice. Toxicol. Appl. Pharmacol. 2020;386:114830. doi: 10.1016/j.taap.2019.114830. PubMed DOI
Podlipec, R. ; Sebastijanovič, A. ; Cassidy, H. ; Han, L. ; Danielsen, P. ; Čotar, P. ; Kokot, H. ; Koser, B. K. ; Vencelj, A. ; Pirker, L. ; Umek, P. ; Hlawacek, G. ; Heller, R. ; Matallanas, D. ; Pelicon, P. ; Stoeger, T. ; Urbančič, I. ; Vogel, U. ; Koklič, T. ; Štrancar, J. . Binucleated Cell Formation and Oncogene Expression after Particulate Matter Exposure Is Preceded by Microtubule Disruption, Dysregulated Cell Cycle, Prolonged Mitosis, and Septin Binding. bioRxiv 2024, p 574515. www.biorxiv.org/content/10.1101/2024.01.07.574515 (accessed Jun 5, 2024).
Zhang Y., Huang T., Jorgens D. M., Nickerson A., Lin L.-J., Pelz J., Gray J. W., López C. S., Nan X.. Quantitating Morphological Changes in Biological Samples during Scanning Electron Microscopy Sample Preparation with Correlative Super-Resolution Microscopy. PLoS One. 2017;12(5):e0176839. doi: 10.1371/journal.pone.0176839. PubMed DOI PMC
Li Y., Almassalha L. M., Chandler J. E., Zhou X., Stypula-Cyrus Y. E., Hujsak K. A., Roth E. W., Bleher R., Subramanian H., Szleifer I., Dravid V. P., Backman V.. The Effects of Chemical Fixation on the Cellular Nanostructure. Exp. Cell Res. 2017;358(2):253–259. doi: 10.1016/j.yexcr.2017.06.022. PubMed DOI PMC
Murk J. L. A. N., Posthuma G., Koster A. J., Geuze H. J., Verkleij A. J., Kleijmeer M. J., Humbel B. M.. Influence of Aldehyde Fixation on the Morphology of Endosomes and Lysosomes: Quantitative Analysis and Electron Tomography. J. Microsc. 2003;212(1):81–90. doi: 10.1046/j.1365-2818.2003.01238.x. PubMed DOI
Ebersold H. R., Cordier J. L., Lüthy P.. Bacterial Mesosomes: Method Dependent Artifacts. Arch. Microbiol. 1981;130(1):19–22. doi: 10.1007/BF00527066. PubMed DOI
Idziak A., Inavalli V. V. G. K., Bancelin S., Arizono M., Nägerl U. V.. The Impact of Chemical Fixation on the Microanatomy of Mouse Organotypic Hippocampal Slices. eNeuro. 2023;10(9):ENEURO.0104-23.2023. doi: 10.1523/ENEURO.0104-23.2023. PubMed DOI PMC
Parlanti P., Cappello V.. Microscopes, Tools, Probes, and Protocols: A Guide in the Route of Correlative Microscopy for Biomedical Investigation. Micron. 2022;152:103182. doi: 10.1016/j.micron.2021.103182. PubMed DOI
Kokot B., Kokot H., Umek P., van Midden K. P., Pajk S., Garvas M., Eggeling C., Koklič T., Urbančič I., Štrancar J.. How to Control Fluorescent Labeling of Metal Oxide Nanoparticles for Artefact-Free Live Cell Microscopy. Nanotoxicology. 2021;15(8):1102–1123. doi: 10.1080/17435390.2021.1973607. PubMed DOI
Suhling, K. et al. Fluorescence Lifetime Imaging. In Handbook of Photonics for Biomedical Engineering; Ho, A. H.-P. ; Kim, D. ; Somekh, M. G. , Eds.; Springer: Netherlands, Dordrecht, 2021; 1–50.
Strickfaden H.. Reflections on the Organization and the Physical State of Chromatin in Eukaryotic Cells. Genome. 2021;64(4):311–325. doi: 10.1139/gen-2020-0132. PubMed DOI
Shrestha D., Jenei A., Nagy P., Vereb G., Szöllősi J.. Understanding FRET as a Research Tool for Cellular Studies. Int. J. Mol. Sci. 2015;16(4):6718–6756. doi: 10.3390/ijms16046718. PubMed DOI PMC
Miller K. N., Victorelli S. G., Salmonowicz H., Dasgupta N., Liu T., Passos J. F., Adams P. D.. Cytoplasmic DNA: Sources, Sensing, and Role in Aging and Disease. Cell. 2021;184(22):5506–5526. doi: 10.1016/j.cell.2021.09.034. PubMed DOI PMC
van der Pol E., Böing A. N., Harrison P., Sturk A., Nieuwland R.. Classification, Functions, and Clinical Relevance of Extracellular Vesicles. Pharmacol Rev. 2012;64(3):676–705. doi: 10.1124/pr.112.005983. PubMed DOI
Goldstein, J. I. ; Newbury, D. E. ; Michael, J. R. ; Ritchie, N. W. M. ; Scott, J. H. J. ; Joy, D. C. . Energy Dispersive X-Ray Spectrometry: Physical Principles and User-Selected Parameters. In Scanning Electron Microscopy and X-Ray Microanalysis; Goldstein, J. I. ; Newbury, D. E. ; Michael, J. R. ; Ritchie, N. W. M. ; Scott, J. H. J. ; Joy, D. C. , Eds.; Springer: New York, NY, 2018; pp 209–234.
Urbančič I., Garvas M., Kokot B., Majaron H., Umek P., Cassidy H., Škarabot M., Schneider F., Galiani S., Arsov Z., Koklic T., Matallanas D., Čeh M., Muševič I., Eggeling C., Štrancar J.. Nanoparticles Can Wrap Epithelial Cell Membranes and Relocate Them Across the Epithelial Cell Layer. Nano Lett. 2018;18(8):5294–5305. doi: 10.1021/acs.nanolett.8b02291. PubMed DOI PMC
Elzanowska J., Semira C., Costa-Silva B.. DNA in Extracellular Vesicles: Biological and Clinical Aspects. Molecular Oncology. 2021;15(6):1701. doi: 10.1002/1878-0261.12777. PubMed DOI PMC
Wyllie A. H., Kerr J. F., Currie A. R.. Cell Death: The Significance of Apoptosis. Int. Rev. Cytol. 1980;68:251–306. doi: 10.1016/S0074-7696(08)62312-8. PubMed DOI
Karbowski M., Youle J. R.. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ. 2003;10:870–880. doi: 10.1038/sj.cdd.4401260. PubMed DOI
Zhang X., Wang F., Liu B., Kelly E. Y., Servos M. R., Liu J.. Adsorption of DNA Oligonucleotides by Titanium Dioxide Nanoparticles. Langmuir. 2014;30(3):839–845. doi: 10.1021/la404633p. PubMed DOI
Bischoff M., Biriukov D., Předota M., Roke S., Marchioro A.. Surface Potential and Interfacial Water Order at the Amorphous TiO2 Nanoparticle/Aqueous Interface. J. Phys. Chem. C. 2020;124(20):10961–10974. doi: 10.1021/acs.jpcc.0c01158. PubMed DOI PMC
Shukla R. K., Badiye A., Vajpayee K., Kapoor N.. Genotoxic Potential of Nanoparticles: Structural and Functional Modifications in DNA. Front Genet. 2021;12:728250. doi: 10.3389/fgene.2021.728250. PubMed DOI PMC
Morrow P.. Possible Mechanisms to Explain Dust Overloading of the Lungs. Fundam. Appl. Toxicol. 1988;10(3):369–384. doi: 10.1016/0272-0590(88)90284-9. PubMed DOI
Sachet M., Liang Y. Y., Oehler R.. The Immune Response to Secondary Necrotic Cells. Apoptosis. 2017;22(10):1189–1204. doi: 10.1007/s10495-017-1413-z. PubMed DOI PMC
Degen M., Santos J. C., Pluhackova K., Cebrero G., Ramos S., Jankevicius G., Hartenian E., Guillerm U., Mari S. A., Kohl B., Müller D. J., Schanda P., Maier T., Perez C., Sieben C., Broz P., Hiller S.. Structural Basis of NINJ1-Mediated Plasma Membrane Rupture in Cell Death. Nature. 2023;618(7967):1065–1071. doi: 10.1038/s41586-023-05991-z. PubMed DOI PMC
Zhao C., Pu W., Niu M., Wazir J., Song S., Wei L., Li L., Su Z., Wang H.. Respiratory Exposure to PM2.5 Soluble Extract Induced Chronic Lung Injury by Disturbing the Phagocytosis Function of Macrophage. Environ. Sci. Pollut Res. 2022;29(10):13983–13997. doi: 10.1007/s11356-021-16797-9. PubMed DOI
Gustafson H. H., Holt-Casper D., Grainger D. W., Ghandehari H.. Nanoparticle Uptake: The Phagocyte Problem. Nano Today. 2015;10(4):487–510. doi: 10.1016/j.nantod.2015.06.006. PubMed DOI PMC
Chen Q., Wang N., Zhu M., Lu J., Zhong H., Xue X., Guo S., Li M., Wei X., Tao Y., Yin H.. TiO2 Nanoparticles Cause Mitochondrial Dysfunction, Activate Inflammatory Responses, and Attenuate Phagocytosis in Macrophages: A Proteomic and Metabolomic Insight. Redox Biology. 2018;15:266–276. doi: 10.1016/j.redox.2017.12.011. PubMed DOI PMC
Gianoncelli A., Bonanni V., Gariani G., Guzzi F., Pascolo L., Borghes R., Billè F., Kourousias G.. Soft X-Ray Microscopy Techniques for Medical and Biological Imaging at TwinMicElettra. Applied Sciences. 2021;11(16):7216. doi: 10.3390/app11167216. DOI
Urbančič I., Arsov Z., Ljubetič A., Biglino D., Strancar J.. Bleaching-Corrected Fluorescence Microspectroscopy with Nanometer Peak Position Resolution. Opt Express. 2013;21(21):25291–25306. doi: 10.1364/OE.21.025291. PubMed DOI
Solvent and Environmental Effects. In Principles of Fluorescence Spectroscopy; Lakowicz, J. R. , Ed.; Springer US: Boston, MA, 2006; pp 205–235.
Berman E. S. F., Fortson S. L., Checchi K. D., Wu L., Felton J. S., Wu K. J. J., Kulp K. S.. Preparation of Single Cells for Imaging/Profiling Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2008;19(8):1230–1236. doi: 10.1016/j.jasms.2008.05.006. PubMed DOI
Liu Y., Tan J., Thomas A., Ou-Yang D., Muzykantov V. R.. The Shape of Things to Come: Importance of Design in Nanotechnology for Drug Delivery. Ther Deliv. 2012;3(2):181–194. doi: 10.4155/tde.11.156. PubMed DOI PMC
Lesniak A., Fenaroli F., Monopoli M. P., Åberg C., Dawson K. A., Salvati A.. Effects of the Presence or Absence of a Protein Corona on Silica Nanoparticle Uptake and Impact on Cells. ACS Nano. 2012;6(7):5845–5857. doi: 10.1021/nn300223w. PubMed DOI
Massaro A.. et al. First-Principles Study of Na Insertion at TiO2 Anatase Surfaces: New Hints for Na-Ion Battery Design. Nanoscale Adv. 2020;2(7):2745–2751. doi: 10.1039/d0na00230e. PubMed DOI PMC
Shriver Z., Capila I., Venkataraman G., Sasisekharan R.. Heparin and Heparan Sulfate: Analyzing Structure and Microheterogeneity. Handb Exp Pharmacol. 2012;207:159–176. doi: 10.1007/978-3-642-23056-1_8. PubMed DOI PMC
Farrugia B. L., Lord M. S., Melrose J., Whitelock J. M.. The Role of Heparan Sulfate in Inflammation, and the Development of Biomimetics as Anti-Inflammatory Strategies. J. Histochem Cytochem. 2018;66(4):321–336. doi: 10.1369/0022155417740881. PubMed DOI PMC
Lu M., Kaminski C. F., Schierle G. S. K.. Advanced Fluorescence Imaging of in Situ Protein Aggregation. Phys. Biol. 2020;17(2):021001. doi: 10.1088/1478-3975/ab694e. PubMed DOI
Rustom A., Saffrich R., Markovic I., Walther P., Gerdes H.-H.. Nanotubular Highways for Intercellular Organelle Transport. Science. 2004;303(5660):1007–1010. doi: 10.1126/science.1093133. PubMed DOI
Donovan A., Lima C. A., Pinkus J. L., Pinkus G. S., Zon L. I., Robine S., Andrews N. C.. The Iron Exporter Ferroportin/Slc40a1 Is Essential for Iron Homeostasis. Cell Metabolism. 2005;1(3):191–200. doi: 10.1016/j.cmet.2005.01.003. PubMed DOI
Nakamura T., Naguro I., Ichijo H.. Iron Homeostasis and Iron-Regulated ROS in Cell Death, Senescence and Human Diseases. Biochimica et Biophysica Acta (BBA) - General Subjects. 2019;1863(9):1398–1409. doi: 10.1016/j.bbagen.2019.06.010. PubMed DOI
Nano G. V., Strathmann T. J.. Ferrous Iron Sorption by Hydrous Metal Oxides. J. Colloid Interface Sci. 2006;297(2):443–454. doi: 10.1016/j.jcis.2005.11.030. PubMed DOI
Mayer K. M., Hafner J. H.. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011;111(6):3828–3857. doi: 10.1021/cr100313v. PubMed DOI
Tang L., Casas J., Venkataramasubramani M.. Magnetic Nanoparticle Mediated Enhancement of Localized Surface Plasmon Resonance for Ultrasensitive Bioanalytical Assay in Human Blood Plasma. Anal. Chem. 2013;85(3):1431–1439. doi: 10.1021/ac302422k. PubMed DOI PMC
Li J., Krasavin A. V., Webster L., Segovia P., Zayats A. V., Richards D.. Spectral Variation of Fluorescence Lifetime near Single Metal Nanoparticles. Sci. Rep. 2016;6(1):21349. doi: 10.1038/srep21349. PubMed DOI PMC
Li J., Cao F., Yin H., Huang Z., Lin Z., Mao N., Sun B., Wang G.. Ferroptosis: Past, Present and Future. Cell Death Dis. 2020;11(2):88. doi: 10.1038/s41419-020-2298-2. PubMed DOI PMC
Danylchuk D. I., Jouard P.-H., Klymchenko A. S.. Targeted Solvatochromic Fluorescent Probes for Imaging Lipid Order in Organelles under Oxidative and Mechanical Stress. J. Am. Chem. Soc. 2021;143(2):912–924. doi: 10.1021/jacs.0c10972. PubMed DOI
Ryan E., Mockros L., Weisel J., Lorand L.. Structural Origins of Fibrin Clot Rheology. Biophys. J. 1999;77(5):2813–2826. doi: 10.1016/S0006-3495(99)77113-4. PubMed DOI PMC
Li W., Sigley J., Pieters M., Helms C. C., Nagaswami C., Weisel J. W., Guthold M.. Fibrin Fiber Stiffness Is Strongly Affected by Fiber Diameter, but Not by Fibrinogen Glycation. Biophys. J. 2016;110(6):1400–1410. doi: 10.1016/j.bpj.2016.02.021. PubMed DOI PMC
Idell S., James K. K., Levin E. G., Schwartz B. S., Manchanda N., Maunder R. J., Martin T. R., McLarty J., Fair D. S.. Local Abnormalities in Coagulation and Fibrinolytic Pathways Predispose to Alveolar Fibrin Deposition in the Adult Respiratory Distress Syndrome. J. Clin Invest. 1989;84(2):695–705. doi: 10.1172/JCI114217. PubMed DOI PMC
Idell S.. Coagulation, Fibrinolysis, and Fibrin Deposition in Acute Lung Injury. Crit. Care Med. 2003;31(4 Suppl):S213–S220. doi: 10.1097/01.CCM.0000057846.21303.AB. PubMed DOI
Guadiz G., Sporn L. A., Goss R. A., Lawrence S. O., Marder V. J., Simpson-Haidaris P. J.. Polarized Secretion of Fibrinogen by Lung Epithelial Cells. Am. J. Respir. Cell Mol. Biol. 1997;17(1):60–69. doi: 10.1165/ajrcmb.17.1.2730. PubMed DOI
Bastarache J. A., Sebag S. C., Grove B. S., Ware L. B.. IFN-γ and TNF-α Act Synergistically to Upregulate Tissue Factor in Alveolar Epithelial Cells. Exp Lung Res. 2011;37(8):509–517. doi: 10.3109/01902148.2011.605512. PubMed DOI PMC
Naji A., Muzembo B. A., Yagyu K., Baba N., Deschaseaux F., Sensebé L., Suganuma N.. Endocytosis of Indium-Tin-Oxide Nanoparticles by Macrophages Provokes Pyroptosis Requiring NLRP3-ASC-Caspase1 Axis That Can. Be Prevented by Mesenchymal Stem Cells. Sci. Rep. 2016;6(1):26162. doi: 10.1038/srep26162. PubMed DOI PMC
Erdem J. S., Závodná T., Ervik T. K., Skare Ø., Hron T., Anmarkrud K. H., Kuśnierczyk A., Catalán J., Ellingsen D. G., Topinka J., Zienolddiny-Narui S.. High Aspect Ratio Nanomaterial-Induced Macrophage Polarization Is Mediated by Changes in miRNA Levels. Front. Immunol. 2023;14:1111123. doi: 10.3389/fimmu.2023.1111123. PubMed DOI PMC
Garvas M., Testen A., Umek P., Gloter A., Koklic T., Strancar J.. Protein Corona Prevents TiO2 Phototoxicity. PLoS One. 2015;10(6):e0129577. doi: 10.1371/journal.pone.0129577. PubMed DOI PMC
Baranowska-Wójcik E., Szwajgier D., Oleszczuk P., Winiarska-Mieczan A.. Effects of Titanium Dioxide Nanoparticles Exposure on Human Healtha Review. Biol. Trace Elem Res. 2020;193(1):118–129. doi: 10.1007/s12011-019-01706-6. PubMed DOI PMC
Gutierrez C. T., Loizides C., Hafez I., Brostro̷m A., Wolff H., Szarek J., Berthing T., Mortensen A., Jensen K. A., Roursgaard M., Saber A. T., Mo̷ller P., Biskos G., Vogel U.. Acute Phase Response Following Pulmonary Exposure to Soluble and Insoluble Metal Oxide Nanomaterials in Mice. Part. Fibre Toxicol. 2023;20(1):4. doi: 10.1186/s12989-023-00514-0. PubMed DOI PMC
Wang J. J., Sanderson B. J. S., Wang H.. Cyto- and Genotoxicity of Ultrafine TiO2 Particles in Cultured Human Lymphoblastoid Cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2007;628(2):99–106. doi: 10.1016/j.mrgentox.2006.12.003. PubMed DOI
Schmid O., Stoeger T.. Surface Area Is the Biologically Most Effective Dose Metric for Acute Nanoparticle Toxicity in the Lung. J. Aerosol Sci. 2016;99:133–143. doi: 10.1016/j.jaerosci.2015.12.006. DOI
Jackson P., Halappanavar S., Hougaard K. S., Williams A., Madsen A. M., Lamson J. S., Andersen O., Yauk C., Wallin H., Vogel U.. Maternal Inhalation of Surface-Coated Nanosized Titanium Dioxide (UV-Titan) in C57BL/6 Mice: Effects in Prenatally Exposed Offspring on Hepatic DNA Damage and Gene Expression. Nanotoxicology. 2013;7(1):85–96. doi: 10.3109/17435390.2011.633715. PubMed DOI
Tivol W. F., Briegel A., Jensen G. J.. An Improved Cryogen for Plunge Freezing. Microsc Microanal. 2008;14(5):375–379. doi: 10.1017/S1431927608080781. PubMed DOI PMC
Becker, W. The Bh TCSPC Handbook, 10th ed.; Becker & Hickl GmbH: 2023.
Podlipec R., Mur J., Petelin J., Štrancar J., Petkovšek R.. Two-Photon Retinal Theranostics by Adaptive Compact Laser Source. Appl. Phys. A: Mater. Sci. Process. 2020;126(6):405. doi: 10.1007/s00339-020-03587-2. DOI
Podlipec R., Mur J., Petelin J., Štrancar J., Petkovšek R.. Method for Controlled Tissue Theranostics Using a Single Tunable Laser Source. Biomed Opt Express. 2021;12(9):5881–5893. doi: 10.1364/BOE.428467. PubMed DOI PMC
Helium Ion Microscopy; Hlawacek, G. ; Gölzhäuser, A. , Eds.; NanoScience and Technology; Springer International Publishing: Cham, 2016.
Höflich K., Hobler G., Allen F. I., Wirtz T., Rius G., McElwee-White L., Krasheninnikov A. V., Schmidt M., Utke I., Klingner N., Osenberg M., Córdoba R., Djurabekova F., Manke I., Moll P., Manoccio M., De Teresa J. M., Bischoff L., Michler J., De Castro O.. et al. Roadmap for Focused Ion Beam Technologies. Appl. Phys. Rev. 2023;10(4):041311. doi: 10.1063/5.0162597. DOI
Hlawacek G., Veligura V., van Gastel R., Poelsema B.. Helium Ion Microscopy. J. Vac. Sci. Technol. B. 2014;32(2):020801. doi: 10.1116/1.4863676. DOI
Schmidt M., Byrne J. M., Maasilta I. J.. Bio-Imaging with the Helium-Ion Microscope: A Review. Beilstein J. Nanotechnol. 2021;12(1):1–23. doi: 10.3762/bjnano.12.1. PubMed DOI PMC
Gianoncelli A., Kourousias G., Merolle L., Altissimo M., Bianco A.. Current Status of the TwinMic Beamline at Elettra: A Soft X-Ray Transmission and Emission Microscopy Station. J. Synchrotron Radiat. 2016;23(Pt 6):1526–1537. doi: 10.1107/S1600577516014405. PubMed DOI
Gianoncelli A., Morrison G. R., Kaulich B., Bacescu D., Kovac J.. Scanning Transmission X-Ray Microscopy with a Configurable Detector. Appl. Phys. Lett. 2006;89(25):251117. doi: 10.1063/1.2422908. DOI
Gianoncelli A., Kourousias G., Stolfa A., Kaulich B.. Recent Developments at the TwinMic Beamline at ELETTRA: An 8 SDD Detector Setup for Low Energy X-Ray Fluorescence. J. Phys.: Conf. Ser. 2013;425(18):182001. doi: 10.1088/1742-6596/425/18/182001. DOI
Solé V. A., Papillon E., Cotte M., Walter Ph., Susini J.. A Multiplatform Code for the Analysis of Energy-Dispersive X-Ray Fluorescence Spectra. Spectrochimica Acta Part B: Atomic Spectroscopy. 2007;62(1):63–68. doi: 10.1016/j.sab.2006.12.002. DOI
Podlipec, R. ; Pirker, L. ; Kriselj, A. ; Hlawacek, G. ; Gianoncelli, A. ; Pelicon, P. . Novel correlative microscopy approach for nano-bio interface studies of nanoparticle-induced lung epithelial cell damage. bioRxiv 2024, p 617573. https://www.biorxiv.org/content/10.1101/2024.10.11.617573v2 (accessed Mar 10, 2025). PubMed PMC