Streamlined metal-based hydrogel facilitates stem cell differentiation, extracellular matrix homeostasis and cartilage repair in male rats

. 2025 May 10 ; 16 (1) : 4344. [epub] 20250510

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40346121

Grantová podpora
82273873 National Natural Science Foundation of China (National Science Foundation of China)
22305173 National Science Foundation of China | Young Scientists Fund
21JCYBJC00660 Natural Science Foundation of Tianjin City (Natural Science Foundation of Tianjin)

Odkazy

PubMed 40346121
PubMed Central PMC12064686
DOI 10.1038/s41467-025-59725-y
PII: 10.1038/s41467-025-59725-y
Knihovny.cz E-zdroje

Dysregulation of extracellular matrix (ECM) homeostasis plays a pivotal role in the accelerated degradation of cartilage, presenting a notable challenge for effective osteoarthritis (OA) treatment and cartilage regeneration. In this study, we introduced an injectable hydrogel based on streamlined-zinc oxide (ZnO), which is responsive to matrix metallopeptidase (MMP), for the delivery of miR-17-5p. This approach aimed to address cartilage damage by regulating ECM homeostasis. The ZnO/miR-17-5p composite functions by releasing zinc ions to attract native bone marrow mesenchymal stem cells, thereby fostering ECM synthesis through the proliferation of new chondrocytes. Concurrently, sustained delivery of miR-17-5p targets enzymes responsible for matrix degradation, thereby mitigating the catabolic process. Notably, the unique structure of the streamlined ZnO nanoparticles is distinct from their conventional spherical counterparts, which not only optimizes the rheological and mechanical properties of the hydrogels, but also enhances the efficiency of miR-17-5p transfection. Our male rat model demonstrated that the combination of streamlined ZnO, MMP-responsive hydrogels, and miRNA-based therapy effectively managed the equilibrium between catabolism and anabolism within the ECM, presenting a fresh perspective in the realm of OA treatment.

Zobrazit více v PubMed

Yang, Y. et al. Controlled release of MSC-derived small extracellular vesicles by an injectable Diels-Alder crosslinked hyaluronic acid/PEG hydrogel for osteoarthritis improvement. Acta Biomater.128, 163–174 (2021). PubMed

Abramoff, B. & Caldera, F. E. Osteoarthritis: pathology, diagnosis, and treatment options. Med. Clin. North. Am.104, 293–311 (2020). PubMed

Martel-Pelletier, J. et al. Osteoarthritis. Nat. Rev. Dis. Prim.2, 16072 (2016). PubMed

Yang, Z. et al. Endogenous cell recruitment strategy for articular cartilage regeneration. Acta Biomater.114, 31–52 (2020). PubMed

Wang, K.-Y. et al. Injectable stress relaxation gelatin-based hydrogels with positive surface charge for adsorption of aggrecan and facile cartilage tissue regeneration. J. Nanobiotechnol.19, 214 (2021). PubMed PMC

Zhu, J. et al. Stem cell–homing hydrogel-based miR-29b-5p delivery promotes cartilage regeneration by suppressing senescence in an osteoarthritis rat model. Sci. Adv.8, eabk0011 (2022). PubMed PMC

Howell, M., Liao, Q. & Gee, C. W. Surgical management of osteochondral defects of the knee: an educational review. Curr. Rev. Musculoskelet. Med.14, 60–66 (2021). PubMed PMC

Hardingham, T. E. & Fosang, A. J. Proteoglycans: many forms and many functions. FASEB J. 6, 861–870 (1992). PubMed

Zheng, L., Zhang, Z., Sheng, P. & Mobasheri, A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res. Rev.66, 101249 (2021). PubMed

Poulet, B. & Staines, K. A. New developments in osteoarthritis and cartilage biology. Curr. Opin. Pharmacol.28, 8–13 (2016). PubMed

Dong, Y. et al. Spatiotemporal regulation of endogenous MSCs using a functional injectable hydrogel system for cartilage regeneration. NPG Asia Mater.13, 71 (2021).

Liu, Y. et al. Spatiotemporal immunomodulation using biomimetic scaffold promotes endochondral ossification-mediated bone healing. Adv. Sci.8, 2100143 (2021). PubMed PMC

Feng, L. et al. MicroRNA-378 contributes to osteoarthritis by regulating chondrocyte autophagy and bone marrow mesenchymal stem cell chondrogenesis. Mol. Ther. Nucleic Acids28, 328–341 (2022). PubMed PMC

Chen, G., Deng, C. & Li, Y.-P. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci.8, 272–288 (2012). PubMed PMC

Roelen, B. A. J. & Dijke, P. T. Controlling mesenchymal stem cell differentiation by TGFβ family members. J. Orthop. Sci.8, 740–748 (2003). PubMed

Schmidt, M. B., Chen, E. H. & Lynch, S. E. A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthr. Cartil.14, 403–412 (2006). PubMed

Kawai, M. et al. Non-surgical model for alveolar bone regeneration by bone morphogenetic protein-2/7 gene therapy. J. Periodontol.89, 85–92 (2018). PubMed

Read, S. A., Obeid, S., Ahlenstiel, C. & Ahlenstiel, G. The role of zinc in antiviral immunity. Adv. Nutr.10, 696–710 (2019). PubMed PMC

Narayanan, S. E. et al. Molecular mechanism of zinc neurotoxicity in Alzheimer’s disease. Environ. Sci. Pollut. Res.27, 43542–43552 (2020). PubMed

Perez, R. A. et al. Therapeutically relevant aspects in bone repair and regeneration. Mater. Today18, 573–589 (2015).

Chen, Z., Zhang, W., Wang, M., Backman, L. J. & Chen, J. Effects of zinc, magnesium, and iron ions on bone tissue engineering. ACS Biomater. Sci. Eng.8, 2321–2335 (2022). PubMed

Fielding, G. & Bose, S. SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomater.9, 9137–9148 (2013). PubMed PMC

Fielding, G. A., Bandyopadhyay, A. & Bose, S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds. Dent. Mater.28, 113–122 (2012). PubMed PMC

Krzeski, P. et al. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Res. Ther.9, R109 (2007). PubMed PMC

Li, X. et al. The protective effect of ligustilide in osteoarthritis: an in vitro and in vivo study. Cell. Physiol. Biochem.48, 2583–2595 (2018). PubMed

Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet.23, 265–280 (2022). PubMed PMC

Ventura, A. et al. Targeted deletion reveals essential and overlapping functions of the miR-17∼92 family of miRNA clusters. Cell132, 875–886 (2008). PubMed PMC

Zhang, Y. et al. Dual functions of microRNA-17 in maintaining cartilage homeostasis and protection against osteoarthritis. Nat. Commun.13, 2447 (2022). PubMed PMC

Walters, N. J. & Gentleman, E. Evolving insights in cell–matrix interactions: elucidating how non-soluble properties of the extracellular niche direct stem cell fate. Acta Biomater.11, 3–16 (2015). PubMed PMC

Pan, Y. & Xiong, D. Study on compressive mechanical properties of nanohydroxyapatite reinforced poly(vinyl alcohol) gel composites as biomaterial. J. Mater. Sci. Mater. Med.20, 1291–1297 (2009). PubMed

Zaragoza, J., Fukuoka, S., Kraus, M., Thomin, J. & Asuri, P. Exploring the role of nanoparticles in enhancing mechanical properties of hydrogel nanocomposites. Nanomaterials8, 882 (2018). PubMed PMC

Baek, K., Shin, H., Yoo, T. & Cho, M. Two-step multiscale homogenization for mechanical behaviour of polymeric nanocomposites with nanoparticulate agglomerations. Compos. Sci. Technol.179, 97–105 (2019).

Chang, A., Babhadiashar, N., Barrett-Catton, E. & Asuri, P. Role of nanoparticle–polymer interactions on the development of double-network hydrogel nanocomposites with high mechanical strength. Polymers12, 470 (2020). PubMed PMC

Albanese, A., Tang, P. S. & Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng.14, 1–16 (2012). PubMed

Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol.2, 249–255 (2007). PubMed PMC

Dasgupta, S., Auth, T. & Gompper, G. Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett.14, 687–693 (2014). PubMed

Li, J. et al. Targeting endogenous hydrogen peroxide at bone defects promotes bone repair. Adv. Funct. Mater. 32, 2111208 (2022).

Jiang, X. et al. Curvature-mediated rapid extravasation and penetration of nanoparticles against interstitial fluid pressure for improved drug delivery. Proc. Natl Acad. Sci. USA121, e2319880121 (2024). PubMed PMC

Chimene, D., Kaunas, R. & Gaharwar, A. K. Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies. Adv. Mater.32, 1902026 (2020). PubMed

Yang, J., Han, C.-R., Duan, J.-F., Xu, F. & Sun, R.-C. Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. ACS Appl. Mater. Interfaces5, 3199–3207 (2013). PubMed

Kim, K.-J. et al. Magnesium ions enhance infiltration of osteoblasts in scaffolds via increasing cell motility. J. Mater. Sci. Mater. Med.28, 96 (2017). PubMed

Yu, Y. et al. Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants. Acta Biomater.49, 590–603 (2017). PubMed

Kamper, M., Paulsson, M. & Zaucke, F. Absence of collagen IX accelerates hypertrophic differentiation in the embryonic mouse spine through a disturbance of the Ihh-PTHrP feedback loop. Cell Tissue Res.367, 359–367 (2017). PubMed

Cai, H. & Liu, A. Spop promotes skeletal development and homeostasis by positively regulating Ihh signaling. Proc. Natl Acad. Sci. USA113, 14751–14756 (2016). PubMed PMC

Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature406, 1005–1009 (2000). PubMed

Nybakken, K. & Perrimon, N. Hedgehog signal transduction: recent findings. Curr. Opin. Genet. Dev.12, 503–511 (2002). PubMed

Li, J. et al. Articular fibrocartilage-targeted therapy by microtubule stabilization. Sci. Adv.8, eabn8420 (2022). PubMed PMC

Sun, X. et al. In situ articular cartilage regeneration through endogenous reparative cell homing using a functional bone marrow-specific scaffolding system. ACS Appl. Mater. Interfaces10, 38715–38728 (2018). PubMed

Jiang, S. et al. Mirror movements induced by hemiballism due to putamen infarction: a case report and literature review. Ann Transl Med. 8, 19 (2019). PubMed PMC

Peng, Z. et al. The regulation of cartilage extracellular matrix homeostasis in joint cartilage degeneration and regeneration. Biomaterials268, 120555 (2021). PubMed

Stanton, H. et al. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature434, 648–652 (2005). PubMed

Rose, B. J. & Kooyman, D. L. A tale of two joints: the role of matrix metalloproteases in cartilage biology. Dis. Markers2016, 4895050 (2016). PubMed PMC

Goldring, M. B. Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best. Pract. Res. Clin. Rheumatol.20, 1003–1025 (2006). PubMed

Goldring, M. B. The role of the chondrocyte in osteoarthritis. Arthritis Rheum. 43, 1916-1926 (2000). PubMed

Kühn, K., D’Lima, D. D., Hashimoto, S. & Lotz, M. Cell death in cartilage. Osteoarthr. Cartil.12, 1–16 (2004). PubMed

Zhang, S. et al. Remodeling articular immune homeostasis with an efferocytosis-informed nanoimitator mitigates rheumatoid arthritis in mice. Nat. Commun.14, 817 (2023). PubMed PMC

Liu, Y. et al. 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Biomaterials279, 121216 (2021). PubMed

Zhao, Y. et al. Nanozyme-reinforced hydrogel as a H2O2-driven oxygenerator for enhancing prosthetic interface osseointegration in rheumatoid arthritis therapy. Nat. Commun.13, 6758 (2022). PubMed PMC

Ha, M. Y., Yang, D. H., You, S. J., Kim, H. J. & Chun, H. J. In-situ forming injectable GFOGER-conjugated BMSCs-laden hydrogels for osteochondral regeneration. npj Regen. Med.8, 2 (2023). PubMed PMC

Park, Y.-B., Ha, C.-W., Lee, C.-H., Yoon, Y. C. & Park, Y.-G. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cell Transl. Med.6, 613–621 (2016). PubMed PMC

Fu, X. et al. Runx2/Osterix and zinc uptake synergize to orchestrate osteogenic differentiation and citrate containing bone apatite formation. Adv. Sci.5, 1700755 (2018). PubMed PMC

Zreiqat, H. et al. The incorporation of strontium and zinc into a calcium–silicon ceramic for bone tissue engineering. Biomaterials31, 3175–3184 (2010). PubMed

Kazimierczak, P., Kolmas, J. & Przekora, A. Biological response to macroporous chitosan-agarose bone scaffolds comprising Mg- and Zn-doped nano-hydroxyapatite. Int. J. Mol. Sci.20, 3835 (2019). PubMed PMC

Sophia Fox, A. J., Bedi, A. & Rodeo, S. A. The basic science of articular cartilage: structure, composition, and function. Sports Health1, 461–468 (2009). PubMed PMC

Vedadghavami, A. et al. Cartilage penetrating cationic peptide carriers for applications in drug delivery to avascular negatively charged tissues. Acta Biomater.93, 258–269 (2019). PubMed PMC

Neuberg, P. & Kichler, A. in Advances in Genetics (eds. Huang L., Liu D. & Wagner E.) (Academic Press, 2014).

Lungwitz, U., Breunig, M., Blunk, T. & Göpferich, A. Polyethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm.60, 247–266 (2005). PubMed

Kunath, K. et al. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J. Control. Release89, 113–125 (2003). PubMed

Sokolova, V. & Epple, M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew. Chem. Int. Ed. Engl. 47, 1382–1395 (2008). PubMed

Gang, F. et al. Thermochemotherapy meets tissue engineering for rheumatoid arthritis treatment. Adv. Funct. Mater. 31, 2104131 (2021).

Zhou, H. et al. A three-in-one strategy: injectable biomimetic porous hydrogels for accelerating bone regeneration via shape-adaptable scaffolds, controllable magnesium ion release, and enhanced osteogenic differentiation. Biomacromolecules22, 4552–4568 (2021). PubMed

Siebert, L. et al. Light-controlled growth factors release on tetrapodal ZnO-incorporated 3D-printed hydrogels for developing smart wound scaffold. Adv. Funct. Mater.31, 2007555 (2021). PubMed PMC

Wang, X. et al. Recent strategies and advances in hydrogel-based delivery platforms for bone regeneration. Nanomicro Lett.17, 73 (2024). PubMed PMC

Zhou, C. et al. Hydrogel platform with tunable stiffness based on magnetic nanoparticles cross-linked GelMA for cartilage regeneration and its intrinsic biomechanism. Bioact. Mater.25, 615–628 (2023). PubMed PMC

Meng, X. et al. Hysteresis-free nanoparticle-reinforced hydrogels. Adv. Mater.34, 2108243 (2022). PubMed

De Corrado, J. M. et al. ZnO colloid crystal facet-type determines both Au photodeposition and photocatalytic activity. ACS Appl. Nano Mater.2, 7856–7869 (2019).

Patil, S., Reshetnikov, S., Haldar, M. K., Seal, S. & Mallik, S. Surface-derivatized nanoceria with human carbonic anhydrase II inhibitors and fluorophores: a potential drug delivery device. J. Phys. Chem. C.111, 8437–8442 (2007).

Díez, P. et al. Ultrafast directional Janus Pt–mesoporous silica nanomotors for smart drug delivery. ACS Nano15, 4467–4480 (2021). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...