• This record comes from PubMed

Theory and observations of the interaction between magnetohydrodynamic waves and shocks

. 2025 May 20 ; 122 (20) : e2425668122. [epub] 20250516

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Grant support
80NSSC20K1783 NASA | NASA Headquarters (NASA HQ)
80NSSC23K0415 NASA | NASA Headquarters (NASA HQ)

The interaction between interplanetary shocks or planetary bow shock and upstream magnetohydrodynamics (MHD) waves (hereafter referred to as wave-shock interactions) is of fundamental importance to plasma physics. Linear waves and shocks, which are supported by MHD framework, are ubiquitous in almost all plasma environments. A thorough understanding of the interaction between linear waves and shocks is useful not only for heliophysics and astrophysics but also for other applications such as inertial confinement fusion. We revisit the theoretical problem of shock-wave interaction based on the linearized boundary conditions of MHD. The shock is regarded as an ideal discontinuity and individual wave modes are considered to impact the shock from upstream. The wavevectors and amplitudes of the downstream transmitted waves are calculated. We further develop a method to apply the theory directly to in-situ heliospheric shock observations. The validity of the method is demonstrated through the example of a fast-forward interplanetary shock observed at 1 AU.

See more in PubMed

Khan J., Aurass H., X-ray observations of a large-scale solar coronal shock wave. Astron. Astrophys. 383, 1018–1031 (2002).

Walsh A. P., et al. , Dawn-dusk asymmetries in the coupled solar wind-magnetosphere-ionosphere system: A review. Ann. Hydrogr. 32, 705–737 (2014).

Zurbuchen T. H., Richardson I. G., In-situ solar wind and magnetic field signatures of interplanetary coronal mass ejections. Space Sci. Rev. 123, 31–43 (2006).

Richardson I. G., Solar wind stream interaction regions throughout the heliosphere. Living Rev. Sol. Phys. 15, 1 (2018). PubMed PMC

Burlaga L., et al. , Crossing the termination shock into the heliosheath: Magnetic fields. Science 309, 2027–2029 (2005). PubMed

A. J. Hundhausen, Coronal Expansion and Solar Wind (Springer-Verlag, New York, 1972).

McKenzie J., Banaszkiewicz M., Axford W., Acceleration of the high speed solar wind. Astron. Astrophys. 303, L45 (1995).

Van Ballegooijen A., Asgari-Targhi M., Heating and acceleration of the fast solar wind by Alfvén wave turbulence. Astrophys. J. 821, 106 (2016).

Zank G. P., et al. , The pickup ion-mediated solar wind. Astrophys. J. 869, 23 (2018).

Drury L., Voelk J., Hydromagnetic shock structure in the presence of cosmic rays. Astrophys. J. 248, 344–351 (1981).

Wang B. B., Zank G., Zhao L. L., Adhikari L., Turbulent cosmic ray-mediated shocks in the hot ionized interstellar medium. Astrophys. J. 932, 65 (2022).

Boldú J. J., et al. , Ion-acoustic waves associated with interplanetary shocks. Geophys. Res. Lett. 51, e2024GL109956 (2024).

Zhao L. L., et al. , Turbulence and wave transmission at an ICME-driven shock observed by the solar orbiter and wind. Astron. Astrophys. 656, A3 (2021).

Zank G. P., et al. , Flux ropes, turbulence, and collisionless perpendicular shock waves: High plasma beta case. Astrophys. J. 913, 127 (2021).

Trotta D., et al. , On the transmission of turbulent structures across the earth’s bow shock. Astrophys. J. 933, 167 (2022).

Wilson L. III, et al. , Low-frequency whistler waves and shocklets observed at quasi-perpendicular interplanetary shocks. J. Geophys. Res. A: Space Phys. 114, A10106 (2009).

Turc L., et al. , Transmission of foreshock waves through earth’s bow shock. Nat. Phys. 19, 78–86 (2023). PubMed PMC

McKenzie J., Westphal K., Interaction of linear waves with oblique shock waves. Phys. Fluids 11, 2350–2362 (1968).

McKenzie J. F., Westphal K. O., Transmission of alfvén waves through the earth’s bow shock. Planet. Space Sci. 17, 1029–1037 (1969).

Westphal K., McKenzie J., Interaction of magnetoacoustic and entropy waves with normal magnetohydrodynamic shock waves. Phys. Fluids 12, 1228–1236 (1969).

McKenzie J. F., Westphal K. O., Interaction of hydromagnetic waves with hydromagnetic shocks. Phys. Fluids 13, 630–640 (1970).

McKenzie J., Hydromagnetic wave interaction with the magnetopause and the bow shock. Planet. Space Sci. 18, 1–23 (1970).

Zhuang H. C., Russell C., Interaction of small-amplitude fluctuations with a strong magnetohydrodynamic shock. Phys. Fluids 25, 748–758 (1982).

Zank G., et al. , Linear mode decomposition in magnetohydrodynamics revisited. Astrophys. J. Suppl. Ser. 268, 18 (2023).

Raboonik A., Tarr L. A., Pontin D. I., Exact nonlinear decomposition of ideal-MHD waves using eigen energies. Astrophys. J. 967, 80 (2024).

Trotta D., et al. , Properties of an interplanetary shock observed at 0.07 and 0.7 AU by parker solar probe and solar orbiter. Astrophys. J. 962, 147 (2024).

Park B., et al. , Change of spectral properties of magnetic field fluctuations across different types of interplanetary shocks. Astrophys. J. Lett. 954, L51 (2023).

Abraham-Shrauner B., Yun S., Interplanetary shocks seen by AMES plasma probe on pioneer 6 and 7. J. Geophys. Res. 81, 2097–2102 (1976).

Santolík O., Parrot M., Lefeuvre F., Singular value decomposition methods for wave propagation analysis. Radio Sci. 38, 10–11 (2003).

Glassmeier K., Motschmann U., Stein R., Mode recognition of MHD wave fields at incomplete dispersion measurements. Ann. Hydrogr.-Eur. Geophys. Soc. 13, 76 (1995).

Motschmann U., Glassmeier K. H., Pinçon J. L., Multi-spacecraft filtering: Plasma mode recognition. ISSI Sci. Rep. Ser. 1, 79 (1998).

Narita Y., Marsch E., Kinetic slow mode in the solar wind and its possible role in turbulence dissipation and ion heating. Astrophys. J. 805, 24 (2015).

Chaston C., et al. , MHD mode composition in the inner heliosphere from the Parker solar probe’s first perihelion. Astrophys. J. Suppl. Ser. 246, 71 (2020).

Zhu X., He J., Verscharen D., Duan D., Bale S. D., Wave composition, propagation, and polarization of magnetohydrodynamic turbulence within 0.3 AU as observed by Parker solar probe. Astrophys. J. Lett. 901, L3 (2020).

Zhao L. L., et al. , MHD and ion kinetic waves in field-aligned flows observed by Parker solar probe. Astrophys. J. 922, 188 (2021).

Borovsky J. E., A statistical analysis of the fluctuations in the upstream and downstream plasmas of 109 strong-compression interplanetary shocks at 1 AU. J. Geophys. Res. A: Space Phys. 125, e2019JA027518 (2020).

Pitňa A., Šafránková J., Němeček Z., Ďurovcová T., Kis A., Turbulence upstream and downstream of interplanetary shocks. Front. Phys. 8, 626768 (2021).

Zhao L. L., et al. , Particle acceleration at 5 AU associated with turbulence and small-scale magnetic flux ropes. Astrophys. J. 872, 4 (2019).

Pitňa A., Šafránková J., Němeček Z., Franci L., Decay of solar wind turbulence behind interplanetary shocks. Astrophys. J. 844, 51 (2017).

Nakanotani M., Zank G., Zhao L. L., Turbulence-dominated shock waves: 2D hybrid kinetic simulations. Astrophys. J. 926, 109 (2022).

L. Zhao, X. Zhu, A. Silwal, Dataset for reproducing figures in “Theory and observations of the interaction between magnetohydrodynamic waves and shocks”. Zenodo. 10.5281/zenodo.15328358. Deposited 2 May 2025. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...