solar wind
Dotaz
Zobrazit nápovědu
OBJECTIVES: Temperature is the most important environmental variable associated with the varicella frequency across the world. The present study compares the incidence of varicella in the districts of Bulgaria against some climatic factors and tries to find environmental variables which account for the differences in the varicella distribution observed among the Bulgarian districts. METHODS: The 28 Bulgarian districts were used as units of observation and their average 10-year varicella incidence (2009-2018) was tested for correlation with the standard bioclimatic variables of WorldClim, version 2. RESULTS: The WorldClim estimates for the annual mean temperature, the maximal temperature of the warmest month, the minimal temperature of the coldest month, the mean temperature of the coldest quarter, and the solar radiation inversely and not significantly correlated with the average 10-year varicella frequency. The precipitation of the warmest quarter and the wind speed correlated positively and also not significantly. Only the mean temperature of the driest quarter correlates significantly with the incidence at district level (Spearman's rank correlation coefficient of -0.45, p = 0.02). The mean of average 10-year varicella incidence rates among districts with driest quarter during the winter (January, February, March) was 387.6 ± 114.1, while among districts with driest quarter during the summer/autumn (July, August, September or August, September, October) 283.3 ± 102.1 (p = 0.02, ANOVA test). CONCLUSIONS: Dry winter and/or wet summer appear as significant determinants for the fluctuant spread of varicella infection in Bulgaria.
- MeSH
- incidence MeSH
- lidé MeSH
- plané neštovice * epidemiologie MeSH
- podnebí * MeSH
- roční období MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Bulharsko MeSH
This paper reports on the structure of the autonomous station for monitoring artificial gamma activity in surface water bodies for the purposes of emergency preparedness of the Czech Republic. A simple design based on the NaI(Tl) submersible detector powered by a combined solar and wind source has been employed. Data transfer is provided by a satellite connection. The detection capabilities of the device have been tested for various unfavourable conditions, and the detection limits have been lowered by using the noise adjustment singular value decomposition (NASVD) method. The detection capabilities of the device fulfil the legal requirements for emergency monitoring, and are almost equal to the detection capabilities of other available devices with a more complicated and less versatile structure.
- MeSH
- monitorování radiace přístrojové vybavení MeSH
- radioaktivní látky znečišťující vodu analýza MeSH
- radioizotopy cesia analýza MeSH
- radioizotopy jodu analýza MeSH
- spektrometrie gama přístrojové vybavení MeSH
- záření gama MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
The surface conditions on the Moon are extremely harsh with high doses of ultraviolet (UV) irradiation (26.8 W · m-2 UVC/UVB), wide temperature extremes (-171°C to 140°C), low pressure (10-10 Pa), and high levels of ionizing radiation. External spacecraft surfaces on the Moon are generally >100°C during daylight hours and can reach as high as 140°C at local noon. A Lunar Microbial Survival (LMS) model was developed that estimated (1) the total viable bioburden of all spacecraft landed on the Moon as ∼4.57 × 1010 microbial cells/spores at contact, (2) the inactivation kinetics of Bacillus subtilis spores to vacuum as approaching -2 logs per 2107 days, (3) the inactivation of spores on external surfaces due to concomitant low-pressure and high-temperature conditions as -6 logs per 8 h for local noon conditions, and (4) the ionizing radiation by solar wind particles as approaching -3 logs per lunation on external surfaces only. When the biocidal factors of solar UV, vacuum, high-temperature, and ionizing radiation were combined into an integrated LMS model, a -231 log reduction in viable bioburden was predicted for external spacecraft surfaces per lunation at the equator. Results indicate that external surfaces of landed or crashed spacecraft are unlikely to harbor viable spores after only one lunation, that shallow internal surfaces will be sterilized due to the interactive effects of vacuum and thermal cycling from solar irradiation, and that deep internal surfaces would be affected only by vacuum with a degradation rate of -0.02 logs per lunation.
- MeSH
- Bacillus subtilis fyziologie účinky záření MeSH
- biologické modely * MeSH
- kosmická loď MeSH
- kosmické záření škodlivé účinky MeSH
- Měsíc * MeSH
- mikrobiální viabilita účinky záření MeSH
- mimozemské prostředí MeSH
- simulace kosmického prostředí metody MeSH
- spory bakteriální fyziologie účinky záření MeSH
- ultrafialové záření škodlivé účinky MeSH
- vakuum MeSH
- vysoká teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
It is a well-known fact that soil degradation is dramatically increasing and currently threatens agricultural soils all around the world. The objective of this study was to reveal the possible connection between soil degradation and seven physical-geographical factors - slope steepness, altitude, elevation differences, rainfall, temperature, soil texture and solar radiation - in the form of threshold values (if these exist), where soil degradation begins and ends. The analysis involved the whole area of the Czech Republic which consists of 13,027 cadasters (78,866 km2). The greatest total degradation threat occurs in areas with slope steepness >7 degrees, average annual temperature <5.9 °C, elevation differences >10.54, altitude >766 m a.s.l. Similarly, the results for water erosion, wind erosion, soil compaction, loss of organic matter, acidification and heavy metal contamination were processed. The results enable us to identify the relationships of different levels of threats which could consequently be used in various ways - for classification of threatened areas, for more effective implementation of anti-degradation measures, or purely for a better understanding of the role of physical geographical factors in soil degradation in the Czech Republic, and thus could increase the chances of reducing vulnerability to land degradation not only in the Czech Republic.
- MeSH
- půda * MeSH
- zachování přírodních zdrojů * MeSH
- zemědělství MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Biogas produced from organic wastes contains energetically usable methane and unavoidable amount of carbon dioxide. The exploitation of whole biogas energy is locally limited and utilization of the natural gas transport system requires CO2 removal or its conversion to methane. The biological conversion of CO2 and hydrogen to methane is well known reaction without the demand of high pressure and temperature and is carried out by hydrogenotrophic methanogens. Reducing equivalents to the biotransformation of carbon dioxide from biogas or other resources to biomethane can be supplied by external hydrogen. Discontinuous electricity production from wind and solar energy combined with fluctuating utilization cause serious storage problems that can be solved by power-to-gas strategy representing the production of storable hydrogen via the electrolysis of water. The possibility of subsequent repowering of the energy of hydrogen to the easily utilizable and transportable form is a biological conversion with CO2 to biomethane. Biomethanization of CO2 can take place directly in anaerobic digesters fed with organic substrates or in separate bioreactors. The major bottleneck in the process is gas-liquid mass transfer of H2 and the method of the effective input of hydrogen into the system. There are many studies with different bioreactors arrangements and a way of enrichment of hydrogenotrophic methanogens, but the system still has to be optimized for a higher efficiency. The aim of the paper is to gather and critically assess the state of a research and experience from laboratory, pilot and operational applications of carbon dioxide bioconversion and highlight further perspective fields of research.
- MeSH
- anaerobióza MeSH
- Archaea metabolismus fyziologie MeSH
- biopaliva MeSH
- bioreaktory mikrobiologie MeSH
- biotechnologie přístrojové vybavení metody MeSH
- fermentace MeSH
- methan metabolismus MeSH
- oxid uhličitý metabolismus MeSH
- průmyslová mikrobiologie metody MeSH
- vodík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
In autumn 2010, an outdoor measuring station for measurement of atmospheric radon, gamma equivalent dose rate in the range of 100 nSv h(-1)-1 Sv h(-1) and proper meteorological parameters such as thermal air gradient, relative air humidity, wind speed and direction and solar radiation intensity was built in the area of the National Radiation Protection Institute vvi. The station was designed to be independent of an electrical network and enables on-line wireless transfer of all data. After introduction of the station, illustrations of its measurement properties and the results of measured diurnal and seasonal variability of atmospheric radon, based on annual continuous measurement using a high-volume scintillation cell at a height of 2.5 m above the ground, are presented.
- MeSH
- časové faktory MeSH
- hodnocení rizik MeSH
- lidé MeSH
- monitorování radiace * MeSH
- pohyb vzduchu MeSH
- radioaktivní znečišťující látky analýza MeSH
- radon analýza MeSH
- roční období * MeSH
- teplota MeSH
- vítr MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
... available 125 -- Other fossil energy sources 126 -- Nuclear energy 128 -- Renewable energy 129 -- Solar ... ... energy 133 -- Wind energy 134 -- Storage and mobile consumption 135 -- Conclusion 135 -- 12 Non-energy ...
1st ed. xxiii, 515 s. : il.
- MeSH
- kardiovaskulární nemoci mortalita MeSH
- lidé MeSH
- magnetismus MeSH
- náhlá smrt MeSH
- Check Tag
- lidé MeSH
... of the Earth 22 -- Formation of the Universe 22 Formation of Galaxies and Stars 23 Formation of the Solar ... ... Nuclear Fusion 267 Coal 269 Natural Gas 270 Synthetic Fuels 270 -- Renewable Energy Resources 271 -- Solar ... ... Energy 271 Wind 275 Biomass 277 Hydroelectric Power 278 Geothermal Energy 279 Hydrogen Fuel 280 -- Conservation ...
3rd.ed. 549 s.